
Spatial Constraint Generation for Motion Planning in Dynamic
Environments

Han Hu1∗ and Peyman Yadmellat2

Abstract— This paper presents a novel method to generate
spatial constraints for motion planning in dynamic environ-
ments. Motion planning methods for autonomous driving and
mobile robots typically need to rely on the spatial constraints
imposed by a map-based global planner to generate a collision-
free trajectory. These methods may fail without an offline
map or where the map is invalid due to dynamic changes
in the environment such as road obstruction, construction,
and traffic congestion. To address this problem, triangulation-
based methods can be used to obtain a spatial constraint.
However, the existing methods fall short when dealing with
dynamic environments and may lead the motion planner to an
unrecoverable state. In this paper, we propose a new method to
generate a sequence of channels across different triangulation
mesh topologies to serve as the spatial constraints. This can
be applied to motion planning of autonomous vehicles or
robots in cluttered, unstructured environments. The proposed
method is evaluated and compared with other triangulation-
based methods in synthetic and complex scenarios collected
from a real-world autonomous driving dataset. We have shown
that the proposed method results in a more stable, long-term
plan with a higher task completion rate, faster arrival time, a
higher rate of successful plans, and fewer collisions compared
to existing methods.

I. INTRODUCTION
Motion planning in a dynamic environment is a corner-

stone of autonomous driving and a challenging engineering
problem. Motion planning methods often require spatial
constraints provided by semantic maps (e.g., centerline, lane
boundary) to generate a trajectory. This requirement results
in motion planning failure where the spatial constraint is
absent or invalid; unmapped roads, unstructured open areas,
congested traffic, partially obstructed single lane, etc.

To address this issue, we propose a new method to
generate spatial constraints from the triangulation mesh of
an environment that can be applied to autonomous driving.
Existing triangulation-based path planning methods construct
a triangulation mesh from nodes in the environment. The
nodes can be the vertices of objects or center of objects.
Subsequently, a channel which is a sequence of free triangles
within the triangulation mesh, connecting the start location
to the goal location, is found via a graph search method.
The channel can serve as a spatial constraint for motion
planning algorithms (e.g. Hybrid A* or Modified Funnel
Algorithm). As the main advantage, the triangulation rep-
resentation reduces the overall time complexity as it results

1Department of Mechanical & Industrial Engineering, University of
Toronto, Toronto, Ontario, Canada M5S 3G8

2Noah’s Ark Lab., Huawei Technologies Canada, Markham, Ontario,
Canada L3R 5A4
∗The work was done during the author’s internship at Noah’s Ark Lab.,

Huawei Technologies Canada.

in a substantially smaller adjacency graph compared to grid-
based methods [1].

Most known methods for motion planning inside a trian-
gulation mesh (e.g. [1]–[7]) ignore dynamic objects, assume
a static environment, and rely on repeated replanning to
handle dynamic objects. These methods typically replan
through dynamically maintained triangulation structure [8]–
[11], incremental, or anytime variant search algorithms [12]–
[14] for efficient replanning, or a combination of both. The
primary challenge with these methods is that they are not
flexible to changes in the environment. This is because the
channel generation scheme in these methods often suffers
from two fundamental limitations: a) invariant triangulation
mesh connectivity assumption and b) masked dynamic nodes,
which causes the channel. Combined, these two limitations
can result in volatile and near-sighted path planning, which
is not suitable for autonomous driving vehicles.

The first limitation is that the nodal connectivity of the
triangulation mesh is assumed to be invariant over time.
This is not a valid assumption as a subset of the channel
no longer exist when the node connectivity changes. Motion
planning based on a channel that does not exist can result in
a near-sighted plan, leading to unfavorable situations such
as path planner failures, sudden stops, and unrecoverable
states. The second limitation is that the existing methods only
consider the interaction between adjacent nodes. However,
this approach causes the motion information of the non-
adjacent dynamic nodes to be masked and ignored by the
adjacent nodes’ connectivity. As a result, the ego vehicle
will have latent responses to dynamic nodes (e.g. pedestrians,
vehicles).

To address the first limitation, we propose a novel, mod-
ular system to generate a sequence of connected channels
segments. Each segment corresponds to a change in node
connectivity at different points in time. This sequence of
segments is generated by identifying the segment affected by
the change and replacing it with a segment from the triangu-
lation mesh connectivity after the change. We also propose
a method to address the second limitation by transmitting
distant nodes’ motion information along the triangulation
mesh edges. This is achieved by projecting each node’s
velocity vector to the adjacent nodes along the edges, thereby
giving each node an estimated motion information of the
distant nodes. Together, the proposed systems and method
generate a sequence of channel segments. Each segment can
be used by a motion planner as the spatial constraint to
generate a partial trajectory, which is then combined into
the overall plan, thereby finding a stable, long-term plan in

a dynamic environment.
The main contributions of this paper are:
• A spatial constraint generation system that predicts and

plans in the triangulation mesh of the environment at
different points in time.

• A method of transmitting motion information of dy-
namic nodes within the triangulation mesh to distant
nodes using the triangulation mesh edges.

II. RELATED WORKS

Most existing triangulation mesh planning methods focus
on fast re-planning. Kallmann [1] used A* in with a dynam-
ically maintained Constraint Delaunay Triangulation [10]
to update node position during runtime. Chen et al. [2]
enhanced Dynamic Delaunay triangulation (DDT) [8] with a
heuristic based algorithm for path planning to handle nodes
that were newly identified by sensors. The Target Attraction
Principle was proposed in [3] to position the nodes of a dual
graph to a Constrained Delaunay Triangulation as a method
to optimize the path cost.

Numerous anytime and incremental variants of A* search
algorithms were reviewed in [4] path planning methods
for a polygonal mesh. For instance, Anytime Repairing
A* (ARA*) [15] attempts to return the best path found
for a given time budget by iteratively improving an initial
suboptimal solution. Incremental search algorithms such as
D* Lite [13] reuses and repairs an initial solution found using
A* at each re-planning cycle to adapt to the changes instead
of re-planning from scratch. Field D* [14] was used in [5]
for efficient re-planning within triangulation and tetrahedral
mesh structures. Demyen et al. [6] introduced Triangulation
Reduction A*, for path planning on a reduced dual graph
of the environment’s triangulation mesh. As an alternative
to re-planning, [7] proposed the Gaps Filling algorithm to
repair the previously found path by reconnecting broken path
segments using Dijkstra’s algorithm. It also employed an
incremental insertion method [11] for efficient triangulation
structure updates. To account for object dynamics, Timed
A* was proposed in [16] for path planning in the dual graph
of the Delaunay triangulation (DT). It considers the object
dynamics by modifying the A*’s cost and heuristic function
to include the ego vehicle’s estimated time of arrival.

The above-mentioned methods do not allow for the con-
sideration of non-adjacent nodes, and do not account for
the changes to the triangulation mesh connectivity during
planning. Distinct from previous work, our proposed method
generates a sequence of connected channel segments to
account for dynamic objects and their effect on the trian-
gulation mesh connectivity.

III. METHODOLOGY

We assume a point representation of the static and dynamic
nodes extracted from the environment, where each node
represents a vertex, a point on the edge, or the centroid of the
object. Each node is described by a 5D vector {x, y, ẋ, ẏ, r},
where r is the radius of the node. We also assume that all
nodes follow a linear motion model. The commonly used

(a) (b)
Fig. 1. Topological Event: a) topological event triggered by P4 moving
to P ′4; and b) violation repaired with edge flipping.

Delaunay Triangulation is employed to generate a triangu-
lation mesh from these nodes. A Delaunay Triangulation
structure over a set of points P must satisfy the condition
that no p ∈ P lies inside a triangle’s circumcircle. The event
which violates this condition is known as a topological event
shown in Figure 1(a). This violation can be locally repaired
by updating the edge connectivity as shown in Figure 1(b).
Repairing the Delaunay Triangulation structure replaces the
two triangles that cause the violation with two new triangles.
This changes the edge connectivity of the triangles, thereby
introducing new node adjacency and dual graph nodes.

Our objective is to find a sequence of spatially and
temporally connected channel segments {C : C =

⋃N
t=0 c

′
t},

where {c′t : c′t =
⋃k
j=0 ∆t,j |k ≤ n} is a subsequence of

ct, such that ∆t,j ∈ c′t is a subset of triangles ∆t,i ∈ ct
that are unaffected by the changes in the edge connec-
tivity of the triangulation mesh at time τt. The channel
{ct : ct =

⋃n
t=0 ∆t,i}, is a sequence of free triangles ∆t,i in

the triangulation mesh connectivity at τt, the triangle ∆t,0

contains the position of the ego vehicle and ∆t,n contains
the goal point. ct is found by applying graph search on the
dual graph of the triangulation mesh.

We consider ∆t,i to be unaffected by changes in the
triangulation mesh connectivity if i) there are no change
to the edge connectivity of ∆t,i, i ∈ {0, . . . , n} or ii) the
first edge connectivity change of ∆t,i occurred when the
ego vehicle is located in ∆t,e ∈ ct, and e > i. The first
condition limits our consideration to the triangles that makes
up the channel, since the changes to the triangles outside of
the channel does not change the edge connectivity of the
channel. The second condition excludes any ∆t,i that had
a change in edge connectivity after the ego vehicle already
past it as these changes do not affect the ego vehicle.

Following the second condition, the last triangle of c′t, i.e.
∆t,k, is determined by first finding the first triangle in ct that
had a change in its edge connectivity, ∆t,m, that satisfies the
following: ∆t,m = ∆t,i ∈ ct|e ≤ i. If e < m, then k = e. If
e = m then k = m− 1, because we define c′t to be triangles
that are unaffected by changes in their edge connectivity.
We do not consider e > m as it is excluded by the second
condition. ∆t,e is the triangle that contains the position of
the ego vehicle estimated at time τt+1, where τt+1 is when
the first edge connectivity change of ∆t,m occurred.

Subsequent channel segment c′t+1 is similarly found by
identifying the segment of ct+1 that is unaffected by changes
in the edge connectivity of the triangulation mesh at time
τt+1. Where ct+1 is from the expected triangulation mesh

Fig. 2. Process diagram of the proposed method.

connectivity at τt+1 under a linear motion model.
We ensure c′t and c′t+1 is spatially and temporally con-

nected by setting the last triangle of c′t to be the first triangle
of c′t+1 at τt+1, i.e. ∆t,k = ∆t+1,0.

The following sections describe the main modules of the
system shown in Figure 2 in detail.

A. Generate Virtual Nodes

For autonomous driving applications, it’s of interest to
confine the ego vehicle to travel within a particular region
instead of allowing it to travel within the entire free space.
This module achieves this by identifying a boundary of the
region that the vehicle will be allowed to drive in, which
may be retrieved from objects in the free space; curbs, lane
lines, barriers, and walls. The boundary is converted to a
series of evenly spaced virtual static nodes, with the spacing
to be narrow enough such that the ego vehicle cannot cross
between the virtual nodes.

B. Triangulation Mesh Generator

We employed Delaunay Triangulation to generate a tri-
angulation mesh from point representation of the static
and dynamic objects extracted from the environment and
constructs the corresponding dual graph. The dual graph has
a node corresponding to each triangle of the mesh and an
edge for each edge in the mesh that separates a pair of
triangles. Target Attraction Principle [3] is used to position
the dual graph nodes since the cost of reaching the triangles
during graph search is computed based on the position of
the dual graph node. Constrained Delaunay Triangulation
or Dynamic Delaunay Triangulation can also be used as
alternatives to construct the triangulation mesh.

C. Motion Information Transmission

We achieve this by projecting the velocity vi of each node
ni onto the positional vectors pi,j to their adjacent nodes nj ,
where pi,j is the positional vector from ni to nj . We denote
the projected velocity vector as v′i. To preserve the heading

information of ni, v′i will assume the direction of vi, thus
v′i = ‖vi‖ cos θv̂i = cos θvi. The effect of the proximity of
ni to nj is accounted for by multiplying v′i by α

‖p‖+α , α ≥ 0,
so that ‖v′i‖ decreases as ni is further away from nj . The α is
to balance the effect of velocity and proximity. Furthermore,
the heading of node ni relative to nj is accounted for by v′i
by a term |π2 − θ|

β , where θ ∈ [−π2 ,
π
2], β ≥ 0, and θ is the

angle between vi and pi,j . If θ /∈ [−π2 ,
π
2], then we multiply

v′i by 0 since ni is moving away from nj . The β is used
to tune this term such that the effect of vi diminishes as it
becomes more orthogonal to pi,j ,

v′i =

{
α

‖p‖+α |
π
2 − θ|

β cos θvi if θ ∈ [−π2 ,
π
2]

0 otherwise
. (1)

To transmit the motion of the ni to nj , we set the velocity
vector vj of nj to v′i if ‖vj‖ < ‖v′i‖ and that vi · pi,j > 0,
as expressed below,

vj =

{
v′i if ‖vj‖ < ‖v′i‖
vj otherwise

. (2)

Figure 3 shows an example of applying this equation onto a
set of nodes, where the velocity information of the dynamic
nodes, red, green, and blue is projected onto the nodes around
them.

Fig. 3. Motion information transmission example. Colored nodes are
dynamic nodes, grey nodes are static nodes. All nodes with the same colored
arrow received velocity information from the same node.

D. Graph Search

This module finds an initial ct that leads from start to goal
within the triangulation mesh connectivity at τt by searching
through the dual graph of triangulation mesh. We used Timed
A* [16], which accounts for the path cost change due to
object dynamics by computing f(teta) = g(teta) + h(teta),
where teta is the estimated time of arrival of the ego
vehicle to a triangle. Additionally, it ensures that the distance
between two nodes is wide enough to allow the ego vehicle
to cross by checking teta against the time interval in which
the length of the corresponding Delaunay Triangulation edge
is above a threshold.

E. Topological Event Prediction

This module determines τt+1, the time of the first edge
connectivity change of ∆t,m. Note that the triangle ∆t,e

contains the ego vehicle position, and we have limited our
consideration to e ≤ m. Therefore, we can efficiently find
τt+1 and ∆t,m by iterating though ∆t,i ∈ ct to check if there
is a change in edge connectivity before the time that the ego
vehicle arrives at ∆t,i. If there is a change, ∆t,m = ∆t,i,
otherwise i = i+ 1. We present this process in Algorithm 1.

1) In-circle Test: The in-circle test [17] defined in (3)
is a standard test used to check if a 4th point lies within
the circumcircle of a triangle. This corresponds to the
incircleTest() function in Algorithm 1.

The in-circle test is performed by calculating the determi-
nant of a 4×4 matrix, constructed from the position of the
4 nodes. Where (xi, yi), i ∈ {1, 2, 3} are the position of
the triangle vertices. (x4, y4) is the position of the 4th point.
The determinant of the 2nd matrix corrects the signs of the
in-circle test such that it is insensitive to the ordering of the
first three points. If γ = 0, the 4th point is co-circular with the
circumcircle, where γ < 0 and γ > 0, respectively, indicate
that the 4th point is inside or outside the circumcircle.

γ = det


1 x1 y1 x21 + y21
1 x2 y2 x22 + y22
1 x3 y3 x23 + y23
1 x4 y4 x24 + y24

× det

1 x1 y1
1 x2 y2
1 x3 y3

 (3)

2) Compute Event Time: Algorithm 1 computes τt+1

by performing the in-circle test on each ∆t,i ∈ ct us-
ing (xi(t), yi(t)), i ∈ {1, . . . , 4}, where t ∈ [τt, teta].
(xi(t), yi(t)) is the expected position of the vertices of ∆t,i

and the point tested by the in-circle test at time t. Time t is a
time point sampled at even intervals from τt to teta. The teta
is the ego vehicle’s estimated time of arrival at ∆t,i because
we only consider the topological event that occurred before
the ego vehicle arrives at ∆t,i.

Algorithm 1: Compute Topological Event Time
Input: ct, sample resolution
Output: τt+1,∆t,i

def vertices(∆t,i):
return vertices of ∆t,i

def getETA(∆t,i):
return teta

def getNeighbors(∆t,i):
return All vertices of the adjacent triangles that are not also

vertices of ∆t,i

def dynamicModel(p1, p2, p3, p4, t):
return position of input points at time t

def incircleTest(a, b, c, p):
return γ < 0

def main(ct, sample resolution):
for ∆t,i in ci do

a, b, c = vertices(∆t,i)
teta = getETA(∆t,i)
for p in getNeighbors(∆t,i) do

for τ in range (0, teta, sample resolution) do
a, b, c, p = dynamicModel(a, b, c, p τ)
if incircleTest(a, b, c, p) then

return τ,∆t,i

return None

Algorithm 1 terminates if the in-circle test finds a topo-
logical event, in which τt+1 is the returned time and ∆t,m is
the returned triangle. Algorithm 1 also terminates if no event
is found for any triangle within the channel, which indicates
that ct is the final segment of C.

3) Dynamic Object Motion Model: This module corre-
sponds to the dynamicModel() function in Algorithm 1.

Fig. 4. Conceptual diagram of the overall generated channel C. The anchor
triangles mark the overlapping triangles in each transition.

This returns (xi(tj), yi(tj)), which is a function that esti-
mates the position of nodes at time tj , tj ∈ [τ, teta], pi(t) =
pi
0 + f(v, t), where f(v, t) is a linear or nonlinear function.
v is the current velocity of the object, and t is time. In our
implementation, we used a linear model, i.e. f(v, t) = vit,
to estimate the position of the nodes.

4) Estimate Ego Arrival Time: This module corresponds
to the getETA() function in Algorithm 1. It estimates the
time of arrival of the ego vehicle teta to ∆t,i following
the linear motion model. The Target Attraction Principle
proposed by [3] is used to position the dual graph node
that represents each triangle. teta is estimated by taking the
ego vehicle’s speed over the travel distance from the starting
position to the dual graph node that corresponds to ∆t,i.

F. Generate Channel Segment

Module III-F.1 identifies c′t by finding triangle ∆t,k ∈
ct, which is the last triangle of c′t. Additionally, since path
planners typically requires a point to navigate to, module III-
F.2 identifies a subgoal point within ∆t,k for path planning.

1) Channel Segment’s Last Triangle Identifier: ∆t,k is
found with the following:
• if e < m, then ∆t,k = ∆t,e , where m is the index of

∆t,m ∈ ct;
• if e ≥ m, then ∆t,k = ∆t,m−1.
To spatially and temporally connect c′t to c′t+1, we consider

the last triangle of c′t to also be the first triangle of c′t+1,
∆t,k = ∆t+1,0. Therefore, ∆t,k serves as the triangle that
transitions from c′t to c′t+1 at time τt+1.

2) Sub-Goal Point Generation: Since local planner typ-
ically requires a point to navigate to, this module chooses
a collision-free point inside the ∆t,k, that is closest to the
estimated ego vehicle position at τ .

G. Terminal Condition

Algorithm 1 will return None when the input ct leads to
the goal point without any of the triangles in ct seeing a
topological event. This means that C = {c′0, . . . , ct}, where
each channel c ∈ C can be used to plan a path segment.

Otherwise, our system finds c′t+1 by repeating from mod-
ule III-B using the expected position of the starting node
and the dynamic objects at τt+1 found by module III-E. Our
system as shown in Figure 2 may also choose to terminate
early to limit the planning horizon when the first n channel
segments c′ is found, or when the predicted τt+1 > τthreshold.

Figure 4 demonstrates a conceptual understanding of C.
Each c′t is valid for from time τt until the next time of
topological event τt+1. To transition from one channel to

the next, the last triangle ∆t,k of c′t will overlap with the
first triangle of the next channel segment c′t+1.

IV. EXPERIMENTS
We carried out two experiments to verify the effectiveness

of our proposed method against a synthetic set of scenar-
ios and a set of real world scenarios from the nuScenes
dataset [18]. We compare the channels generated by our
proposed method against the channels generated by exist-
ing triangulation-based planning methods that uses A* and
Timed A* to search for the channels. Because there are
no metrics to directly evaluate channels, the channels are
evaluated based on the performance of the path planned
using those channels. The Funnel Algorithm [19] is used
to produce the path using the channel generated by each
method. We add an offset to the vertices of the funnel as
padding for collision avoidance. Note that the simplicity
of the funnel algorithm cannot guarantee the path to be
collision free. The channels are compared in terms of rate of
task completion, the time taken to complete each task, rate
of successfully planning a path, and rate of collision. All
experiments are implemented using Python and carried out
on a computer with a 3.6GHz CPU and 32GB of memory.

A. Scenarios
1) Synthetic: This experiment is a set of 200 synthetic

scenarios to test the long-term planning capability of our
proposed method by introducing frequent changes in the tri-
angulation mesh connectivity. These scenarios have between
10 to 20 pedestrians with randomized position and speed,
ranging from 0.25 m/s to 1 m/s crossing perpendicularly to
a 30 m straight road. The ego vehicle is tasked to navigate
to the end of the road at 2 m/s within a simulation time limit
of 25 s.

2) nuScenes: This experiment is a set of 150 real-world
scenarios from the nuScenes dataset [18] to test the proposed
method’s performance in realistic scenarios. These scenarios
are collected from typical driving conditions such as as
highway, intersections, and parking lots. Each scenario is
20 s long, annotated at 2 Hz. We linearly interpolated the
position of objects in the scenario at 10 Hz for higher
temporal resolution. All dynamic objects’ motion after the
annotated 20 s is assumed to be linear. The ego vehicle is
tasked to navigate, starting from the data collection vehicle’s
pose at t = 0 to the pose at t = 20 at the average velocity of
the data collection vehicle within 30 s in simulation time. The
experiment environment is a rectangular region that encloses
the start and goal point. We confine the ego vehicle’s motion
to the road by placing virtual static nodes on the boundary
of the drivable area map layer of the nuScenes dataset.
On average, each scenario contains 389 nodes, where 55
of which are dynamic or static objects identified from the
environment.

B. Result
This section presents the comparison results obtained

based on the Synthetic and nuScenes scenarios. A* is ex-
pected to result in a higher completion rate, higher success

rate, and lower task time as it ignores the dynamic objects.
Because A* ignores dynamic objects, it is also expected
to result in a higher collision rate. As such, a desirable
method, ideally, should have comparable completion rate,
success rate, and task time to those of A*, while resulting in
a lower collision rate. Figure 5 summarizes the comparison
results between A*, Timed A* [16], and our method against
a Synthetic dataset and a real-world dataset from nuScenes.

Fig. 5. Experimental results in comparison to Timed A* [16] and A*
against a Synthetic dataset and a real-world dataset from nuScenes.

1) Synthetic: Our method completed 96.3% of tasks at
an average time of 17 s, Timed A* completed 78.6% of the
tasks at an average time of 21 s, and A* completed 95.5% of
the task at 16.3 s. Our method produced spatial constraints
that allowed the local planner to find a valid plan in 98.7%
of the planning cycles, whereas Timed A* was 70.7% and
A* at 98.9%.

The Timed A* based method has a lower success rate
of finding a path at each planning cycle. This is because
Timed A* looks for a channel based on the future state of
the triangulation mesh, while it provides the path planner
with a channel at the present state. The channel width at
the present state may not be large enough to allow the ego
vehicle to pass, thus the path planner fails. The path planner
failure cases for both our method and A* based method are
situations where the ego vehicle needed to stop and wait for
dynamic objects in front of it to pass before it can proceed.

Since A* ignores the motion of dynamic objects when it
generates the spatial constraint, it may result in unfavorable
paths that are not suitable for autonomous driving. The effect
of this is evident in its high collision rate of 31.3%, whereas
our method is at 14.8% and Timed A* at 19.1%. Figure 6
shows an example of the unfavorable situation, where the A*

Fig. 6. Straight Scenario Example. Our method (red solid), Timed A*
(green dotted), A* (blue dashed). Grey circles (pedestrians).

Fig. 7. nuScenes Scenario Example. Our method (red solid), Timed A*
(green dotted), A* (blue dashed). Grey circles (dynamic or static objects).

method shown by the blue dashed line resulted in a path that
ignored the motion of the dynamic object until t = 3.6. It
was then forced to make a sudden course change at t = 4.0
because the previous path was no longer feasible. The path
generated by our method shown in the red solid line and
Timed A* shown in the green dotted line both moved in
another direction to account for the pedestrian motion and
have anticipated that the path will not be feasible at a later
time. Note that some of the collisions are contributed by the
simplicity of the path planner not providing sufficient spacing
when passing an object. A more sophisticated local planner
would result in fewer or no collisions.

2) nuScenes: Our method completed the task 78.7%,
outperforming Timed A*, which was at 71.3% and A* at
74.1%. The average time of completion is similar for all
three methods; 22.9 s for our method, 23.9 s for Timed A*,
and 23.25 s for A*. Using the channel produced by our
method, the local planner was able to find a path 97% of
the time, where it was 89.1% for Timed A* and 94.5% for
A*. Because most scenarios are similar to a lane following
task, the collision rate is similar for all three methods;
5% for our method, and 5.3% for both Timed A* and
A*. This is expected as pedestrians or other objects mostly
move along the road in these scenarios, which is an easier
motion planning task compared to pedestrian crossing or
lane-changing scenarios.

Figure 7 shows an example of the nuScenes scenario
where Timed A* identified a feasible channel, however,
the channel was based on the current triangulation mesh
connectivity. This channel did not have sufficient space to
allow the local planner to find a path, thus the local planner
was unable to find a path until t = 5.3. At t = 13.4, a
pedestrian was about to cross the road, our proposed method
accounted for this when generating a channel and tried to
maneuver around the pedestrian, as shown in the slight turn
in its path. In contrast, A* would’ve only stopped when the
spacing to cross becomes too narrow.

V. CONCLUSIONS

In this paper, we presented a novel method to generate
spatial constraints for motion planning in dynamic environ-
ments. This method can enhance other planning modules. For
example, it can act as a preprocessor to generate spatial con-
straints as inputs or to prune candidate trajectories generated
by the motion planner. It can perform mission planning to

find a global route or to use it as a safeguard against semantic
map failures that may be caused by dynamic changes in
the map (e.g. road obstruction and construction zones).
Furthermore, the proposed system’s modularity allows for
adding, removing, and replacing the various modules as
desired. We evaluated our method in a set of real-world
scenarios simulated based on an autonomous driving dataset.
The result shows that using our method can obtain a more
stable, long-term plan that yields a higher task completion
rate, faster travel time, higher planning success rate, and
fewer collisions compared to other existing methods.

REFERENCES

[1] M. Kallmann, “Path planning in triangulations,” in Proceedings of
the IJCAI workshop on reasoning, representation, and learning in
computer games, 2005, pp. 49–54.

[2] J. Chen, C. Luo, M. Krishnan, M. Paulik, and Y. Tang, “An en-
hanced dynamic delaunay triangulation-based path planning algorithm
for autonomous mobile robot navigation,” in Intelligent Robots and
Computer Vision XXVII: Algorithms and Techniques, vol. 7539. In-
ternational Society for Optics and Photonics, 2010, p. 75390P.

[3] H. Yan, H. Wang, Y. Chen, and G. Dai, “Path planning based on
constrained delaunay triangulation,” in 2008 7th World Congress on
Intelligent Control and Automation. IEEE, 2008, pp. 5168–5173.

[4] M. Kallmann and M. Kapadia, “Navigation meshes and real-time
dynamic planning for virtual worlds,” in ACM SIGGRAPH 2014
Courses, 2014, pp. 1–81.

[5] S. Perkins, P. Marais, J. Gain, and M. Berman, “Field D* path-finding
on weighted triangulated and tetrahedral meshes,” Autonomous agents
and multi-agent systems, vol. 26, no. 3, pp. 354–388, 2013.

[6] D. Demyen and M. Buro, “Efficient triangulation-based pathfinding,”
in Aaai, vol. 6, 2006, pp. 942–947.

[7] P. Broz, M. Zemek, I. Kolingerová, and J. Szkandera, “Dynamic path
planning with regular triangulations,” Machine Graphics & Vision,
vol. 24, no. 3/4, pp. 119–142, 2014.

[8] O. Devillers, S. Meiser, and M. Teillaud, “Fully dynamic delaunay tri-
angulation in logarithmic expected time per operation,” Computational
Geometry, vol. 2, no. 2, pp. 55–80, 1992.

[9] M. A. Mostafavi, C. Gold, and M. Dakowicz, “Delete and insert
operations in Voronoi/Delaunay methods and applications,” Computers
& Geosciences, vol. 29, no. 4, pp. 523–530, 2003.

[10] L. P. Chew, “Constrained Delaunay triangulations,” Algorithmica,
vol. 4, no. 1-4, pp. 97–108, 1989.

[11] H. Edelsbrunner and N. R. Shah, “Incremental topological flipping
works for regular triangulations,” Algorithmica, vol. 15, no. 3, pp.
223–241, 1996.

[12] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An anytime, replanning algorithm.” in ICAPS,
vol. 5, 2005, pp. 262–271.

[13] S. Koenig and M. Likhachev, “D* Lite,” Aaai/iaai, vol. 15, 2002.
[14] D. Ferguson and A. Stentz, “The Field D* algorithm for improved

path planning and replanning in uniform and non-uniform cost envi-
ronments,” Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-05-19, 2005.

[15] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Advances in neural information
processing systems, 2004, pp. 767–774.

[16] C. Cao, P. Trautman, and S. Iba, “Dynamic channel: A planning
framework for crowd navigation,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 5551–5557.

[17] L. Guibas and J. Stolfi, “Primitives for the manipulation of general
subdivisions and the computation of Voronoi,” ACM transactions on
graphics (TOG), vol. 4, no. 2, pp. 74–123, 1985.

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027,
2019.

[19] J. Hershberger and J. Snoeyink, “Computing minimum length paths
of a given homotopy class,” Computational geometry, vol. 4, no. 2,
pp. 63–97, 1994.

