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Robots that autonomously navigate real-world 3D cluttered environments need to safely

traverse terrain with abrupt changes in surface normal and elevation. This thesis presents

a decentralized robot architecture for navigation and a novel sim-to-real pipeline for

learning real-world navigation in simulation using deep reinforcement learning.

The decentralized robot architecture design avoids the requirement of a powerful

central server and improves the robustness of the processes against hardware and soft-

ware failures by isolating the computing units. A set of experiments were conducted

to demonstrate the robustness of the architecture’s mapping system against challenging

environmental conditions.

The sim-to-real pipeline uses deep reinforcement learning to learn a navigation policy

from data collected in simulation. It incorporated a combination of sim-to-real strategies

to address the reality gap that uniquely exists for 3D navigation problems. A set of real-

world experiments demonstrated that the pipeline successfully transferred the learned

navigation policy into the real world.
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Chapter 1

Introduction

1.1 Motivation

Autonmous navigation of a mobile robot in a real-world, cluttered, 3D rough terrain is a

challenging issue with applications to Urban Search and Rescue (USAR) [1–3], hazardous

material clean-up [4–6], mining [7, 8], and construction [9, 10]. In these applications, the

terrain is often cluttered and consists of features that have abrupt changes in elevation and

surface normals; uneven ground, steps, rocks of arbitrary shapes and sizes, and ramps.

The complexity of the terrain poses a traversability challenge that existing 2D approaches

do not consider. 2D environments, such as an office space, consist of obstacles with well-

defined boundaries in the x-y plane; alls, desks, boxes, etc. In such environments, the

terrain traversability at a location can be sufficiently represented as a binary value if

an obstacle is present [11]. In contrast, the terrain traversability of a 3D environment

may depend on numerous factors such as slope, object height, robot’s velocity, and wheel

positioning, etc. For instance, steps and road curbs can be traversable depending on

their height relative to the robot. Slopes and ramps are only traversable from the front.

Due to the complexity of the terrain traversability, paths planned using 2D approaches

are not always feasible.

1



Chapter 1. Introduction 2

To date, most existing methods for navigating in 3D rough terrain focus on represent-

ing the terrain traversability of the environment. The computed traversability is then

used to plan a path using a graph search algorithm as A* [12], Dijkstra [13], or Rapidly

exploring Random Tree (RRT) [14]. The most common approaches in the literature are

classical methods and learning-based methods. Most classical methods solely consider

manually designed heuristics to map terrain features (e.g., height, slope, and roughness)

into traversability representations [15–19]. However, manually designed heuristics cannot

exhaustively describe the traversability of a complex 3D terrain. Furthermore, the man-

ually selected input features often do not consider critical traversability factors, such as

wheel terrain interaction, robot’s intended action, and the robot’s state [20]. Learning-

based methods [21–28] focus on using machine learning models to learn the relationship

between the input features and the traversability representation. The learning-based

methods commonly use images and manually selected features as the input to learning

the terrain traversability. However, many of these require a large amount of manually

labeled training data, which can be a labor-intensive process. Both classical and learning-

based methods produce a simplified traversability representation; binary [18,19,22], scalar

value [15, 17, 24–26], probabilistic value [21, 27], or a categorical label [16, 23, 28]. Path

planning based on these representations loses critical terrain information, such as robot-

terrain interaction and wheel slippage effects. These information directly influences the

robot’s ability to successfully navigate through rough terrain.

The end-to-end approach is a promising method that avoids using handcrafted map-

ping heuristics and the simplification of the traversability representation. This approach

trains a deep neural network policy to directly map an input to the desired output, such

as pixels to robot motor command [29, 30] or a heightmap to a path [31]. Furthermore,

end-to-end approaches can train in simulation. This avoids the reliance on a large amount

of manually labeled training data, which can be expensive. The feasibility of using the

end-to-end Deep Reinforcement Learning (DRL) approach for rough terrain navigation
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in simulation has been demonstrated by Zhang et al. [29] and Josef et al. [31]. However,

this has yet to be achieved in the real world.

The challenge with applying DRL to the real world is that policies learned in simula-

tion suffer from the reality gap. The reality gap is the performance degradation during

inference in the real world due to the discrepancies between the simulated training en-

vironment and the real-world inference environment [32]. This is because the learned

policy can overfit to domain-specific features during training; sensor noise, visual tex-

tures, model dynamics, etc. These discrepancies cause the inputs to the policy to be in

a different distribution than the ones seen during training [33,34].

Sim-to-real is an emerging research area for strategies to overcome the reality gap. The

main categories of the strategies include domain randomization, domain-invariant inputs,

and improving simulation fidelity. Successful applications of these have been shown in

numerous robotic applications for aerial vehicle obstacle avoidance [35], quadruped robot

local motion [32], object manipulation [36–38], and 2D navigation [39–42]. Sim-to-real

strategies have yet to be applied to 3D rough terrain navigation. The 3D navigation

problem has unique challenges unseen in 2D navigations, such as robot terrain interaction

and wheel slippages.

1.2 Thesis Objective

The objective of this thesis is to develop a method for a wheeled robot to navigate in a

cluttered 3D rough terrain.

The navigation capability of mobile robots in 3D rough terrain is desirable by appli-

cations such as USAR, hazardous material cleanup, mining, and construction. Existing

classical and learning-based rough terrain navigation approaches are unsuitable due to

the reliance on manually designed heuristics and overly simplified traversability repre-

sentations. The end-to-end DRL based method showed feasibility for 3D navigation in
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simulation. However, these methods cannot be directly applied to the real world due

to the reality gap. Sim-to-real strategies are effective in addressing the reality gap in

numerous robotic applications, including 2D navigation.

1.3 Proposed Thesis Methodology

This thesis achieves aims to address the 3D rough terrain navigation problem through a

sim-to-real pipeline that will learn and transfer the DRL policy from simulation to the

real world. This thesis will present:

• The development of a hardware and software robot architecture for navigation in

3D rough terrain.

• A sim-to-real pipeline for learning and applying an end-to-end DRL based naviga-

tion policy to real-world 3D rough terrain navigation.

1.3.1 Literature Review

Chapter 2 provides a detailed review of the literature as a baseline understanding of

existing work. This also provides support to the claims and decisions made in the de-

velopment of the mobile robot platform, sim-to-real pipeline, and sim-to-real strategies.

The proposed mobile robot architecture needs to operate in a cluttered challenging 3D

environment. Core modules, such as navigation and control, requires stable pose es-

timation to function. Therefore, the pose estimation module must be robust against

challenges such as motion blur, lighting, and texture, which exist in the terrain of the

expected operating environment (i.e., USAR). This chapter starts with a review of the

literature that compared the accuracy and robustness of the state-of-the-art SLAM algo-

rithms. Section 2.2 presents a detailed review and analysis on classical, learning-based,

and deep-learning-based approaches as the baseline understanding of the existing work
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and their shortcomings. End-to-end papers are presented as supporting evidence for the

feasibility of the DRL-based rough terrain navigation approach that this thesis uses. Sec-

tion 2.3 presents literature that used or developed sim-to-real strategies as the supporting

evidence and inspiration on the strategies developed in this thesis.

1.3.2 Decentralized Robot Architecture Design and Integration

Chapter 3 details the hardware and software design of a decentralized ROS based ar-

chitecture. The hardware architecture consists of multiple computing units, sensors,

and network communication devices which are integrated into the Jaguar4×4 wheeled

robot. The software architecture uses the ROS framework for its modular architecture,

well-supported robotic packages, and popularity within the field of robotics.

The robustness of the SLAM module is critical in autonomous navigation. It pro-

vides the pose estimation and mapping information that the navigation and control

modules require. Most existing literature evaluates the robustness of SLAM using pop-

ular, or inhouse datasets [43–45] that have rich visual features and good illumination

levels. However, there is a lack of understanding of the SLAM’s robustness under chal-

lenging environmental conditions; sparse features, poor illumination, textureless surface,

and long-range depth estimation.

This thesis presents a set of mapping experiments conducted to evaluate the feasibility

of SLAM algorithms under challenging environmental conditions.

1.3.3 Sim-to-Real Transfer of Deep Reinforcement Learning Pol-

icy for Rough Terrain Navigation

Chapter 4 presents the proposed sim-to-real pipeline. The pipeline addresses the reality

gap by 1) improving simulation fidelity, 2) using domain invariant observations, and 3)

applying domain randomization to training parameters. The pipeline first constructs a
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geometrically accurate model of the real-world for training in the Gazebo [46] simulator.

The geometric model minimizes the terrain discrepancies between the real world and the

training environment. The Asynchronous Advantage Actor-Critic (A3C) DRL algorithm

[47] is used to train a Convolutional Neural Net (CNN) for navigation in the simulation

terrain. This CNN takes in the robot’s position and an elevation map centered around

the robot as domain invariant observations. This avoids overfitting to features that

are environment-specific, such as texture, color, and lighting condition [39, 40]. During

training, domain randomization is applied to terrain steepness, motion disturbance, and

robot pose estimation. Domain randomization is a popular sim-to-real strategy used by

[32,35–37]. The randomization exposes the policy to a wide range of simulation parameter

variations during training to reduce overfitting to a specific parameter value. This would

have the real-world value to appear to the policy as one of the variations [32, 35]. The

trained policy is deployed to the physical robot without additional training needed in the

real world.

Real-world navigation experiments were conducted using the mobile robot integrated

with the architecture developed in chapter 3. In these experiments, the robot navigates

between a pair of randomly selected start and goal locations. There are a total of 20

pairs of points. Each pair is repeated 3 times for a total of 60 trials. A comparison study

is conducted between a classical method and a deep reinforcement learning method in

the simulation environment using the 20 location pairs. The performance is measured in

terms of success rate, cumulative travel distance, cumulative travel time, and replanning

rate. A simulation-based ablation study was conducted to evaluate the importance of

the proposed domain randomization parameters in sim-to-real transfer. This study mea-

sured the cumulative reward of the policies trained in the absence of one of the domain

randomization parameters. During each set of evaluations, the simulation environment

doubled the randomized training parameters value until they were 8 times the values

used during training.
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1.3.4 Conclusion

Chapter 5 highlights the contribution of the thesis on 1) the development of a robot archi-

tecture for rough terrain navigation, 2) a set of experiments that compared the robustness

of SLAM algorithms under challenging environmental conditions, 3) a novel sim-to-real

pipeline for 3D DRL rough terrain navigation policy, 4) three unique domain random-

ization parameters that address the unique challenges in 3D rough terrain navigation, 5)

a set of experiments that demonstrated the first successful application of real-world 3D

rough terrain navigation using end-to-end DRL, 6) a set of comparison experiment that

showed the superior performance of DRL against existing classical methods, and 7) an

ablation test that demonstrated the importance of the proposed domain randomization

in generalizing to larger terrain variations. Finally, future recommendations of the work

are discussed, followed by a concluding statement.



Chapter 2

Literature Review

2.1 Simultaneous Localization and Mapping Algo-

rithms

Ibragimov et al. [48] compared the performance of SLAM algorithms based on differ-

ent sensors in an indoor environment. Both visual and LiDAR based SLAM algorithms

were investigated; monocular camera based Oriented FAST and Rotated BRIEF (ORB-

SLAM2) [49] and Dense Piecewise Planar Tracking and Mapping from a Monocular

Sequence (DPPTAM) [50], RGB-D camera based RTAB-Map [51], stereo camera based

ZED-SLAM [52], and 2D-LiDAR based Hector SLAM [53]. The testing office environment

contained features that are challenging to visual SLAM, such as monochrome, homoge-

neously painted walls, and glass walls. Camera images and 2D LiDAR measurement data

were recorded as the robot was teleoperated along a pre-determined path. The recorded

data was later passed into the SLAM algorithms to build the trajectory. The experiment

showed that the Hector SLAM had the lowest average deviation from the ground truth

amongst all the SLAM algorithms. ZED-SLAM had the lowest deviation from all visual

SLAM algorithms.

Ragot et al. [54] compared the performance of ORB-SLAM2 against RTAB-Map in

8
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both indoor and outdoor. The ground truth was validated with a Vicon motion capture

system. Comparison between RTAB-Map with RGB-D, ORB-SLAM2 with RGB-D and

ORB-SLAM2 with stereo demonstrated that the ORB-SLAM2 algorithm performed bet-

ter in terms of measuring total distance traveled. Whereas the RTAB-Map algorithm

performs better in terms of trajectory estimation.

Giubilato et al. [55] compared stereo camera-based SLAM algorithms and visual

odometry algorithms in a hallway environment for a mobile robot. The testing envi-

ronment contained challenging visual features such as low texture walls, lens flare due to

direct sunlight, and high contrast regions. The SLAM algorithms compared were ORB-

SLAM2, RTAB-Map, and SPTAM [56]. The visual odometry algorithms compared were

LibVISO2 [57] and ZED visual odometry. The trajectory produced by the 2D LiDAR

based Hector SLAM was used as the ground truth. The experiment showed that motion

blur due to sharp turns, low texture walls, and over-exposure due to direct sunlight re-

sulted in a lack of discriminative visual features. Only ORB-SLAM2 and ZED-SLAM

were robust against this issue and was able to estimate the full trajectory.

Filipenko et al. [58] compared 11 ROS based SLAM algorithms. 3 of which are

LiDAR based, 3 were stereo sensor-based, and 6 were are monocular camera-based. The

environment was a well-lit, large, open concept office environment with chairs and desks.

The experiment teleoperated the robot along a closed-loop rectangular path which served

as the ground truth. The experiment showed that RTAB-Map had the smallest absolute

RMSE of 0.163m but lost tracking at monochrome walls. ORB-SLAM2 was more stable,

with a similar absolute RMSE of 0.190m.

Silva et al. [59] compared the accuracy of 5 ROS based SLAM algorithms that are

compatible with RGB-D cameras. Two of which were 2D LiDAR based algorithms that

used the RGB-D camera to imitate a laser scan. One of the algorithms was monocular

vision-based, and the other two algorithms were stereo vision-based. The experiments

were conducted on two custom datasets of an office environment and three publicly
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available datasets. The experiment showed that RTAB-Map is the most efficient 3D

mapping method. ORB-SLAM2 has good accuracy but can have loop detection errors

that caused visible drift when there is a lack of visual features.

RTAB-Map [51] proposed by Labbé is a SLAM algorithm based on an incremental

appearance-based loop closure detector. Since RTAB-Map is a loop closure based algo-

rithm, it can take in different types of odometry inputs; visual, LiDAR, or wheel odom-

etry, thereby providing support both to visual SLAM and LiDAR SLAM. Furthermore,

RTAB-Map is well integrated into ROS. This versitility allows it to use various existing

odometry approaches, such as RGBDSLAMv2 [60], which is robust against situations

where the camera is obstructed, or there are not enough visual features to track [51].

ORB-SLAM2 [49] proposed by Mur-Artal is a visual-based SLAM algorithm that

allows input from monocular, stereo, or RGB-D camera. This algorithm uses ORB

features [61] for visual feature detection. Bundle adjustment is performed after loop

closure to optimize the estimated camera frame position.

2.2 Rough Terrain Navigation Methods

Existing rough terrain navigation methods treat navigation as a multi-step problem. A

representation of the environment is first extracted from sensory information, where the

environment traversability is represented by a binary [18,19,22], scalar value [15,17,24–

26], probabilistic value [21,27], or a categorical label [16,23,28]. A graph search algorithm

is then applied to the environment to search for a path considering the traversability

representation.

2.2.1 Classical Methods

In [15], path planning for a tracked, flipper robot in an indoor staircase environment was

performed in a 3D grid map with D*-Lite [62]. A dense, 3D grid map environment repre-
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sentation was generated from sparse point cloud information using tensor voting. Tensor

voting extracted fundamental geometries such as planes, lines, and spheres, as well as the

saliency of the feature. D*-Lite was employed to search for a path using binary feasibility

criteria and a traversability cost computed from the saliency, orientation, distance, and

heading of the neighboring cells. Real-world experiments in a turning staircase showed

that the robot could reach the goals; however, active control was needed for the robot

flippers.

In [16], a planning system was developed which integrated different 2D planners for

mobile robots navigating specific 3D terrains types. 3D polygon environment models

were decomposed into 2D regions via a grid-based technique. The polygons were as-

signed semantic types by applying a handcrafted heuristic to their geometry. Different

primitive planners were chosen to generate path trajectories based on the semantic type

of the terrain in these regions. A* was used on unlabeled terrain. The single-query bidi-

rectional sampling technique was used on flat ground. The robot was restricted to solely

move in the direction of the slope on slopes and stairs. Simulated experiments showed

that the planning system was able to generate 5m long trajectories in a varying terrain

environment in less than 1 second. This time varies depending on factors such as terrain

types and the obstacles in the terrain.

In [17], a global path planning method was presented that utilized: 1) initial trajec-

tories generated on top of 3D point clouds via RRT, 2) its variant RRT for global opti-

mization, and 3) fine-grained local optimization. Terrain traversability was measured as

a weighted sum of robot orientation with respect to gravity and terrain roughness. The

terrain roughness was evaluated by computing the residual distribution of a plane fitted

to point cloud patches. Each local trajectory segment along the path was optimized by

minimizing a handcrafted cost function which consisted of the weighted sum of steering

curvature, traversability, and trajectory length. The least-cost trajectory was found using

graph search with Dijkstra’s shortest path algorithm. Waypoint navigation experiments
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in a sloping terrain and a two-story parking garage showed that the robot could navigate

these environments with some human intervention needed in the first scenario.

In [18], RRT was used for ground vehicle navigation in conjunction with a heuristic-

based traversability assessment approach. This method planned trajectories on a 3D

point cloud map acquired by an aerial vehicle. Feasible trajectories were found by search-

ing through the tree for a traversable path. The traversability was determined as a binary

value using heuristic rules that measured the roughness, pitch, and roll of a plane fitted

to point cloud patches. Navigation experiments on point clouds of different real-world

terrain from the Sensefly elevation dataset showed that the method generated feasible

trajectories in a mining quarry and a gravel pit type terrain.

Ruetz et al. [19] proposed a method for real-time 3D mesh representation of the

environment using the General Hidden Point Removal Operator [63]. The proposed

method first constructs a mesh from the local free space identified using the General

Hidden Point Removal Operator. A binary traversability value is then computed for the

mesh polygon by thresholding its geometric features such as surface angle, neighboring

surface normal, and vertex height. Real-world experiments using paths planned with

RRTconnect [64] with Reeds-Shepp path [65] showed that the proposed method allowed

for long-range navigation in an urban environment.

2.2.2 Classical Learning-Based Methods

In [21], Sock et al. proposed a method of generating 2D traversability grid-map using

multi-sensor probabilistic fusion. RGB color means, Lab color means, the entropy of

intensity, and normalized positions acquired with a vision sensor were passed into a

Support Vector Machine (SVM) to compute a traversability probability of the grid cells.

Slope measured by a 3D LiDAR were mapped to a traversability probability using an

empirically found exponential function. The probability value found by the vision sensor

and the LiDAR were fused with the commonly used Bayesian principle [66]. Real-world
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experiments demonstrated that a robot autonomously traversed a trail environment using

the proposed method.

Zhou et al. [22] proposed training a SVM visual classifier from a hand-labeled dataset

for identifying ground regions in outdoor forested terrains. Textures and color acquired

from a vision sensor and geometric features such as height and ray tracing score from

LiDAR point clouds were used as input features to the SVM. The SVM classifier was

retrained online using additional samples generated using flood filling and hole filling

operations. Classification experiments in outdoor, forested environments showed that

the retrained classifier had increased accuracy at identifying ground regions.

Happold et al. [23] proposed a method to classify types of terrain under insufficient

range information. A shallow Multi-Layer Perceptron (MLP) classifies the terrain type

of proximal grid cells based on geometric features such as height variation and slope.

The classification data generated from the MLP classifier was then used to build a set

of 3D histograms to learn the mapping from color to terrain geometry. The terrain

geometry predicted from the MLP and the set of 3D histograms were combined into an

overall 2D traversability grid-map. Classification experiments in an open environment

with obstacles showed that the proposed method fully identified the obstacles at long

range.

In [24], a multi-objective particle swarm optimization algorithm (MOPSO) was pro-

posed for global path planning of a known rough terrain. LiDAR, RGB-D, and stereo

cameras were used to obtain the contour map and the height map of the terrain, which

were then discretized into 2D grids. From there, the minimum and maximum pixel values

in each grid cell were used to indicate the terrain’s roughness and presence of obstacles.

Costs measure based on terrain roughness and trajectory length were used to evaluate

the global trajectory found by each particle. The optimal trajectories were then found

using the Pareto dominance method. MOPSO compared against NSGA-II, TV-MOPSO,

and SPEA2, in a simulated environment demonstrated that MOPSO found feasible paths
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that were more Pareto optimal.

Silver et al. [25] proposed to use LEArning to seaRCH(LEARCH) for learning a

non-linear cost function to map features into a scalar traversability cost in a 2D grid-

map. The proposed method learned from manually annotated traversal costs maps and

human demonstration of desired navigation behavior. Input features such as max object

height and object density were attained from point clouds and vision sensors. Navigation

experiments in rugged terrain compared the trajectories found from a manually annotated

cost map and the learned cost map demonstrated that the learned cost resulted in more

aggressive navigation behaviors.

Shan et al. [26] proposed to use Bayesian Generalized Kernel (BGK) for computing a

dense 2D binary traversability grid-map under sparse point cloud data. The traversability

score of each known cell is computed as a weighted linear combination of height, slope,

and surface roughness [67]. The traversability of unknown cells was inferred using the

known cells as training data. BGK regression is first applied to unknown cells to infer

the elevation, then BGK classification is applied to the unknown cells using the inferred

elevation as input. Experiments in a simulated urban environment showed that the

proposed method produced a traversability grid-map for the full environment in real-

time when 50% of the environment is directly observed.

2.2.3 Deep Learning-Based Methods

Chavez-Garcia et al. [27] proposed to use a CNN architecture trained from a synthesized

height map dataset to output a probabilistic traversability graph. The CNN outputs a

binary traversability classification for a grid cell given a terrain heightmap at a robot

orientation. All traversability maps produced for each robot orientation are overlayed

to attain the overall traversability probability. The grid cell forms the nodes of the

traversability graph and the cell connectivity forms the edges. The training data was

synthesized by directing a simulated robot with a random initial pose to move straight on
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a procedurally generated map. The terrain patch under the robot is labeled traversable if

the robot could navigate through, otherwise, non-traversable. Classification experiments

conducted on 3D point clouds of real-world terrains (e.g. mining quarry and town en-

vironments) demonstrated that the classifier performed well on real-world features, such

as slopes, holes, and steps. A real-world experiment on sloped terrain showed that the

robot successfully reached the target location when teleoperated along the maximum

traversable path.

F. Schilling et al. [28] proposed using fused semantic segmentation and terrain geom-

etry features as inputs to Random Forest (RF) for multi-class terrain category clas-

sification. Pixel-wise semantic segmentation features was attained using the VGG-

16 [68] network architecture pre-trained on the Imagenet [69] dataset transferred onto

the CityScapes dataset [70]. Geometric features such as height, slope, and roughness

were calculated with point cloud plane fitting. The semantic and geometric features were

fused via a point cloud projection onto the image plane. The RF classifier used the

fused feature vectors to classify each pixel into safe, risky, or obstacle. The RF classifier

was trained from a hand-labeled dataset obtained through a depth sensor and a LiDAR.

Classification experiments using real images showed that the proposed method achieved

a high AUC score. However, the real-world experiment was unsuccessful due to motion

blur.

2.2.4 End-to-End Learning Based Methods

Kai et al. [29] proposed using the A3C [47] DRL algorithm to learn to navigate in an

unknown 3D rough terrain in simulation with a CNN and Long Short-Term Memory

(LSTM) architecture. The CNN network takes depth image, elevation map, and the

robot’s relative pose as inputs to output linear and angular velocity motion commands.

A LSTM layer was used to capture the underlying state of the partially observable en-

vironment. A positive reward was given as the robot gets closer, or reaches the goal
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location. A negative reward was given when the robot reached an undesirable terminal

state. Random environments with hills and valleys were generated using Gaussian noise.

Navigation experiments in simulation with unknown terrain showed that the robot was

able to perform point-to-point navigation.

Josef et al. [31] proposed navigation using Deep-Q Reinforcement Learning with Rain-

bow network architecture [30] and a self-attention module. The Rainbow network took

different types of range sensor inputs to learn forward, left, and right motion commands

in a simulated environment generated with gaussian noise. A zero-range sensor such as

IMU was used to sense the robot’s position to the goal. Immediate-range sensing was used

to perform a one-step look ahead binary traversability estimation. Local-range sensing

produced an elevation 3m by 3m sized elevation map. A round shooting target reward

structure was employed, where the robot is positively rewarded every time it enters inner

rings that encircled the goal position. Navigation experiments in simulation comparing

the different sensor inputs showed that local-range with zero-range sensing input attained

the highest success rate. During the experiment, the self-attention module was shown to

focus on hazardous areas such as holes to adjust the robot position to avoid falling.

Nguyen et al. [71] proposed the Navigation Multimodal Fusion Network architecture

that uses end-to-end supervised learning for mapping multimodal sensory information

to steering commands. The proposed architecture fused 2D laser measurements, RGB

images, and 3D point clouds using ResNet8 [72] and T-Net [73]. The training data was

collected from a Gazebo [74] simulation by manually driving a robot in a manually con-

structed disaster scene. Domain randomization was applied to the environment textures

during training to improve generalization. Experiments against state-of-the-art network

architectures used in autonomous navigation showed that the proposed architecture with

domain randomization had the lowest error. Further experiments comparing the different

sensor inputs showed that the fused multimodal input achieved the lowest error value.
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2.3 Sim-to-Real Strategies for Deep Reinforcement

Learning

Sadeghi et al. [35] applied domain randomization to a simulated environment during

DRL training to learn a real-world collision avoidance policy of a quadcopter. Visual

parameters of the training environment (i.e., texture, lighting, and furniture placements)

were highly randomizing during training such that the network learns representations

that are invariant to surface appearances. Learning agents were trained in a simulated

indoor environment constructed using Blender [75], which had a low degree of realism.

The VGG-16 [68] network was used to learn a Q-function that mapped an RGB image to

a discrete set of motion commands. Real-world collision avoidance experiments showed

that the policy learn using only simulated images could generalize well to a variety of

real-world structures, including the ones that were not present during training.

Peng et al. [36] used domain randomization to learn non-prehensile manipulation of

a puck with a 7-DOF robotic arm. Eight parameters, such as link mass, controller gains,

and puck mass, were randomized during training. A recurrent network trained using

the Recurrent Deterministic Policy Gradient [76] algorithm and Hindsight Experience

Replay [77] were used along with the randomized parameters to learn target joint angles

in simulation from a 52D state space. The state-space included the arm’s position and

velocity, gripper velocity, as well as the puck’s position, orientation, and velocities. Object

manipulation experiments in the real world showed that a policy learned with an LSTM

architecture can reach a 91% success rate and can cope with a variety of real-world

dynamics.

Tan et al. [32] used a combination of domain randomization, high-fidelity simulator,

and compact observation space to reduce the reality gap when learning the local motion

controller policy of a quadruped robot. Physical parameters were randomized during

training; mass, motor friction, and latency, etc. The randomization value range was
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found via system identification. Random force perturbations were also applied during

training to learn to recover balance. A high-fidelity simulation environment was con-

structed with a fine-tuned Universal Robot Description File (URDF), accurate motor

dynamics, and a controller signal latency model. The observation space was limited to

the roll, pitch, and angular velocities of the robot and the motor angles to avoid us-

ing noisy sensor measurements that may drift. The local motion controller policy was

formulated as a Partially Observable Markov Decision Process (POMDP) and solved

using the policy gradient method. The policy and the value functions were represented

by shallow MLP. Physical experiments conducted on a quadruped robot demonstrated

that the learned gait patterns were able to move at the same speed with less power

consumption when compared to manually engineered motor gait patterns. Comparison

with policy without the sim-to-real strategies demonstrated that the policy learned using

high-fidelity simulation and random perturbations can transfer to real life, while oth-

ers cannot. Additionally, it was found that applying random force perturbations had a

similar effect to domain randomization.

Tobin et al. [37] explored the hypothesis: sufficient variation in simulation allows

models trained in simulation to be generalized to the real world without additional train-

ing in the real world. This hypothesis was tested in an object localization task, using

a VGG-16 [68] network trained with stochastic gradient descent on the L2 loss between

the estimated object position and the ground truth. Training data were from simulated

randomized RGB images. All training samples were randomized in position, texture,

camera orientation, added noise, etc. Experiments in the real world demonstrated that

the trained locator had comparable performance against traditional techniques for ob-

ject pose estimation. An ablation study showed that a large amount of training data and

variability is important to successfully transfer the policy learned in simulation to the

real world.

In [39], domain invariant features were used to learn linear and angular robot ve-



Chapter 2. Literature Review 19

locity commands for 2D navigation using Asynchronous Deep Deterministic Policy Gra-

dient (ADDPG) network. A 10-dimensional vector consisting of evenly sampled 2D

LiDAR measurements was used as the domain invariant observation input. This vec-

tor was appended with the previous navigation actions and relative target position for

a 14-dimensional input vector to the ADDPG network. Real-world experiments were

conducted in an office space setting with a differential drive robot. It showed that the

learned policy allowed the robot to navigate longer travel distances using observation

inputs that were more sparse when compared to the ROS Move Base methods [78].

Francis et al. [40] used 2D LiDAR measurements as domain invariant features to help

transfer navigation and obstacle avoidance behaviors learned in simulation. A hierar-

chical kinodynamic planner was presented, which combined Probabilistic Road Map [79]

and Automated Reinforcement Learning (AutoRL) [80] for long-range indoor navigation.

AutoRL was used to perform hyperparameter optimization over a Deep Deterministic

Policy Gradient (DDPG) [81] network to learn short-range point-to-point navigation and

obstacle avoidance using a compact 2D LiDAR measurement as input. The learned agent

guides the roadmap construction by connecting two points only if the agent consistently

navigated between the two points without collision. Evaluations conducted in two dif-

ferent real-world environments on a differential drive robot demonstrated a high success

rate with a dense roadmap.

Pan et al. [41], proposed Realistic Translation Network (RTN) to improve the simu-

lation fidelity of reinforcement learning based road navigation for self-driving cars. The

RTN transformed raw images from a simulation that had unrealistic texture and color

into realistic images by first extracting semantic meanings of the image, then synthe-

size realistic images from the semantic means using a conditional Generative Adversarial

Network (cGAN). SegNet [82] trained on the CityScapes [70] dataset was used for the

semantic meaning extraction. cGAN was used to synthesize the realistic images that

had the same semantic representation. The synthesized images were used as the input
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to A3C algorithm using a CNN based network to train a driving policy that gave the

actions of turning left, right, and go straight. Navigation experiments on a real-world

driving dataset showed that the learned model using the RTN network improved per-

formance compared to models trained in the same environment by only using domain

randomization or images from the simulator.

Hong et al. [42], proposed using semantic segmentation as domain invariant feature

inputs to an A3C algorithm to learn a target following and obstacle avoidance policy.

Semantic segmentation was performed using DeepLab [83] trained on the ADE20K [84]

and ICNet [85] trained on the [70] dataset. The A3C algorithm used the semantic seg-

mentation images as inputs to learning linear and angular robot speeds in a simulated

environment. The real-world experiment showed that policy learned using the proposed

method maintained the same level of performance as in simulation. Comparison study

against other sim-to-real strategies in simulation demonstrated that the policy learned

using semantic labels performed better against methods such as domain randomization,

depth image input, and RGB image input.

Ruse et al. [38] used the progressive neural networks architecture [86] to transfer

robotic arm controller policy learned in simulation to the real world. A task of locating

objects with the manipulator was trained in simulation using an image as the input to the

A3C algorithm and the progressive neural network. The learned policy was transferred

to the real-world by retraining on the physical manipulator with new columns added to

the progressive network and freezing the parameters learned in simulation. Real-world

experiments comparing progressive nets against fine-tuned parameters showed that the

progressive net method attained higher reward.



Chapter 3

Decentralized Robot Architecture

Design and Integration

This chapter presents the hardware and software design of a decentralized ROS based

architecture for a wheeled mobile platform.

A decentralized design avoids the need for a central server and allows computation

processes to run in parallel on different machines. This feature reduces the hardware

requirement of the onboard computing units. It also modularizes each computing unit

such that the processes are isolated, thereby becomes robust against issues such as unsta-

ble connection to the central server or crashing of unrelated processes. This architecture

adapted the ROS framework for its modular architecture, well-supported robotic pack-

ages, and popularity within the field of robotics research.

The architecture is integrated into a Jaguar4x4 wheeled mobile robot from Dr.Robot

Inc. for autonomous navigation in 3D terrain. It also served as the experiment vehicle

for the sim-to-real pipeline presented in chapter 4.

21
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3.1 System Design

3.2 Hardware Architecture

Figure 3.1: Hardware architecture diagram of Jaguar4×4.

The hardware architecture design is shown in Figure 3.1. It consists of multi-model

sensors, computing units, and communication hardware. The robot shown in Figure 3.2

is the Jaguar4×4 robot integrated with the hardware architecture.

The multimodal sensors include the Stereo Labs ZED-Mini stereo camera with a built-

in Inertial Measurement Unit (IMU) and Velodyne VLP-16 3D LiDAR. The ZED-Mini

stereo camera is used to provide robust VIO odometry for pose estimation. The LiDAR

is used to build an accurate spatial representation of the terrain surrounding the robot.

Two onboard computing units are used separately for CPU heavy tasks and GPU

heavy tasks. In the hardware integrated into the robot, the Intel NUC with a Core i5 CPU

and the Jetson TX2 were used. Both computing units use the Ubuntu 16.04 operating

system and the ROS Kinetic framework for interprocess communication. Because of its

higher processing capabilities, the Intel NUC is responsible for CPU-heavy computations;
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pose estimation using RTAB-Map, robot motion control, map building, robot motion

control, VLP-16 driver, and the mobile platform driver. The Jetson TX2 is used to

provide processing capabilities for the ZED-Mini, as the camera requires Nvidia GPU

Compute Unified Device Architecture (CUDA) cores.

The data transfer done between the computing units that are on the robot is achieved

through a high bandwidth Network switch for high speed and reliable information transfer

to maximize interprocess communication bandwidth.

A ground station computer for remote control and visualization is connected to the

robot via Wi-Fi. This ground station can launch processes, teleoperate the robot, as well

as visualize the data processing and collection by the robot’s onboard computers.

Figure 3.2: Jaguar4×4 physical appearance.

3.3 Software Architecture

The software architecture adapted the ROS framework because of its modular architec-

ture, well-supported robotic packages, and popularity within the field of robotics research.
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Figure 3.3 shows the software architecture integrated into the robot shown in Figure 3.2.

Figure 3.3: Software architecture diagram of Jaguar4×4.

The Jetson TX2 and Intel NUC computers are two different computing units that con-

nect to a common network switch via ethernet. The ground system is used for interactions

with the onboard computers such as launching nodes, sending navigation commands, vi-

sualization, and make code changes through a wireless network.

The interprocess communication between the Intel NUC, Jetson TX2, and the ground

station is facilitated as a decentralized ROS Master system using the multimaster fkie

ROS package. The multimaster fkie node allows each computer to bring up their

dedicated node manager called ROS Master. Topics are synchronized from the ROS

Master under the same network to transfer data between one another.

Compared to the traditional multi-machine setup [87], this decentralized computing

design does not require a powerful central server as computation processes can run on

different machines. This modularization allows the running processes to not depend
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on a stable connection to the central ROS Master that is running on another machine.

For instance, in a multi-machine design, the SLAM algorithm that is running on the

Jaguar4×4 can fail due to weak communication signals if the ROS Master is running on

the ground station.

However, this design can be limited by the communication bandwidth. For instance,

the quality of the sensor information may be limited when it is acquired on a separate

computer than where SLAM is running. The ZED-Mini is capable of capturing a high

definition image at a high frame rate. However, it can only be used at 640x480p at

30fps due to the bandwidth limit. Additionally, the wireless communication between the

rover computers and the ground station does not allow large data to be transferred. A

relay node and a image compression transport node is used to alleviate this issue. It

is important to use a high bandwidth network switch to avoid this bottleneck.

Master Discovery and Sync

Each of the Intel NUC, Jetson TX2, and the ground station has a master discovery

node. This node allows the ROS Master on other machines to be discovered. The

master sync node is running on the ground station and the Intel NUC, which is needed to

subscribe to a topic published by nodes under another ROS core. This node synchronizes

the topics specified in the parameter server to its ROS core.

Relay

The relay node [88] on the Intel NUC subscribes to all the messages from the Jetson

TX2 and re-broadcast to other topics on Intel NUC to avoid redundant network traffic

between the machines. This is needed because each subscription to a topic on Jetson TX2

from Intel NUC will result in a different data stream, thereby occupying extra bandwidth.
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Image Compression Transport

The image compression transport node [89] compresses and transports the image seen

by the sensors to the ground station for low latency visualization. The topics sent from

Jetson TX2 are not compressed because compressing the image topic would result in a

loss of image information, thereby causing performance degradation in SLAM algorithm.

Jaguar Motor Control

The jaguar motor control node is the Jaguar4×4 driver that interacts with the motor

control board. This node converts velocity commands into motor control signals using a

skid steer control model [90].

ZED SDK Wrapper

The zed sdk wrapper node [52] interacts with the driver software of the ZED-Mini sensor

to publish information such as VIO, RGB images, depth images, etc to ROS topics.

Velodyne VLP-16

The velodyne vlp 16 node [91] interacts with the VLP-16 LiDAR to manage the hard-

ware settings and publishes the 3D point cloud as a ROS topic. The 3D point cloud topic

is subscribed by rtabmap node and the elevation map node to build a height map of

the surrounding environment.

RTAB-Map

The rtabmap node is the RTAB-Map algorithm [51] running on the Intel NUC. It takes

the VIO calculated by ZED-SLAM as a prior and publishes pose corrections to the global

pose of the rover based on the image stream sent over from the ZED-Mini on the Jetson

TX2. This node must run on the Intel NUC because the Jetson TX2 lacks the CPU
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power to compute pose correction update at a high frequency. This node also can build

a 3D reconstruction of the environment surrounding the robot for visualization.

Elevation Map

The elevation mapping [92] [93] node is a ROS package designed for producing a robot

centric elevation map that aggregates a series of measurements with consideration to

motion uncertainty. In this software architecture design, this node takes in the pose

estimated by RTAB-Map and the 3D point cloud scanned by VLP-16 sensor.

Robot State Publisher

The robot state publisher [94] node publishes the Jaguar4×4’s transform (TF) frames,

which is a series of frame transformation information that tells the rover where are the

sensors and the body of the rover located relative to one another.

Twist Multiplexer

The twist multiplexer [95] node is a prioirty-based multiplexer that multiplex multiple

velocity command input into a sends a single velocity input to the jaguar motor control.

The sources in decreasing priority order are robot teleop, ground station teleop,

safety switch node, and positional pid control node.

Robot Teleop and Ground Station Teleop

The robot teleop node running on the Intel NUC allows teleoperation control of the

robot using a game controller connected to the Jaguar4×4 platfrom using a USB connec-

tion. Similarly, the ground station teleop node allows teleoperation of the Jaguar4×4

from the ground station. The robot teleop node is given the highest priority and the

ground station teleop is given the second highest priority such that the operator can
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always manually overide unsafe actions taken by the robot during autonomous naviga-

tion.

Safety Switch

The safety switch node is designed to instantly stop any unsafe autonomous opera-

tions by requiring the operator to hold down a button on the joystick that is physi-

cally connected to the Jaguar4×4 platform. This node sends a continuous signal to the

twist multiplexer to enable all controls other than manual teleoperation.

Positional Controller

The positional controller node is a cascade controller shown in Figure 3.4 that con-

trols the robot’s position within the environment using the VIO computed by ZED-Mini.

This cascade controller compensates for the wheel slippage that is present within the 3D

rough terrain environment.

The inner controller loop uses a proportional [96] wheel-spin rate controller with

encoders as feedback. Only the proportional term was used because no observable wheel

oscillation was seen when the derivative and the integral term were set to 0 under the

Ziegler-Nichols tuning method [97].

The outer loop uses a bang-bang controller [98] or a robot positional PID controller to

output linear and angular robot velocity with a goal distance or yaw heading estimated

by VIO as feedback. The linear and angular velocities are converted into individual wheel

spin rates using the kinematic model of skid steer robot [90]. The bang-bang controller

outputs a constant linear and angular robot velocity until the robot has passed the goal

distance or yaw angle. The robot positional PID controller outputs a linear and angular

robot velocity to track the set point goal distance and yaw heading. A low pass filter

was applied to the noisy positional feedback signal estimated by ZED-Mini. A minimum

effort is introduced to overcome the weight of the physical robot system, wheel slippage,
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and the motor’s counter-electromotive force. The maximum effort is saturated to 45%

of the maximum motor power for safety. The advantage of this controller is that it

corrects the robot position errors caused by skid steer control on 2D terrain. However,

its accuracy and reaction time is lower than the bang-bang controller on 3D terrain due

to a combination of significant system lag, low-resolution encoder on the motors, and

noisy position feedback. The system lag is between the positional controller node, motor

control board, and the motors.

Figure 3.4: Jaguar4×4 cascasde positional controller block diagram.

RVIZ

The user interface in this software architecture for interacting with the Jaguar4×4 from

the ground station is based on terminal and RVIZ [99]. Terminal commands are used

to remotely launch ROS processes on the machines on Jaguar4×4 through Secure Shell

Protocol (SSH). RVIZ is used for the visualization of data such as 3D point cloud, camera

image, depth image, etc.

3.4 Experiments

The robustness of the SLAM module is critical given it provides the pose estimation and

mapping information that the navigation and control modules require.

Existing literature [48, 54, 55, 58, 59, 100–102] evaluates the robustness of the ROS

compatible SLAM algorithms by measuring the accuracy with public datasets [43–45] or
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in house datasets. These datasets have environmental conditions that are favorable for

the SLAM algorithm, as they have rich visual features and good illumination conditions.

In SLAM, challenges such as poor illumination, textureless surfaces, and reflections

can cause the algorithm to fail [103]. Both poor illumination conditions [104, 105] and

textureless surfaces [106, 107] in the operating environment poses a challenge to SLAM

algorithms due to a lack of visual keypoints. Surface reflection from glass surfaces can

prevent RGB-D cameras and LiDAR from producing accurate depth estimation [108].

Additionally, empty environments such as a corridor or outdoor space can cause RGB-D

cameras to fail due to range limitations [23]. Moreover, in cluttered rough terrain, robot-

terrain interactions such as slippage, sudden drops, and uneven terrain can result in

motion disturbance in the form of irregular vibration, sudden movements, or collisions to

the robot chassis. The motion disturbances cause motion blur to the perception sensors

that are rigidly linked to the robot chassis. It can severely degrade the accuracy of

pose estimation [109–111]. The SLAM module and the sensor design must be robust

against these challenges that are present in the environment and providing continuous

pose estimation information.

There is a lack of literature on the robustness of the SLAM algorithm under chal-

lenging environmental conditions such as poor illumination conditions, sparse visual key-

points, long-range depth estimation, and motion disturbance. This experiment presents

an analysis on the robustness of the SLAM algorithms under these challenging environ-

mental conditions.
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3.4.1 Experiment Setup

Figure 3.5: SLAM algorithm robustness comparison experiment environment. Red lines
marks the pre-determined path followed by the robot during the experiment.

This experiment tests the robustness of SLAM algorithms under challenges of motion

disturbance, poor illumination conditions, sparse visual key points, and long-range depth

estimation. The experiment environment is the open space shown in Figure 3.5, where

a robot followed a 10m × 10m square path shown by the red lines in the figure. The

robot was manually moved along the path shown in Figure 3.6a and recorded the data

collected by the sensors. The collected data was then passed to the SLAM algorithms to

evaluate the quality of the map.

Motion disturbance was introduced in the form of consistent vibrations to the plat-

form. This was done by adjusting the wheels of the platform such that it was slightly

off-axis.

The open environment provided the sparse keypoints challenge as there were little to

no objects along most of the experiment path. This also challenged the depth estimation

ability of the sensors as it requires long-range depth sensing. There were three locations
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(a) Experiment environment top view. Red lines marks the pre-determined path followed by
the robot during the experiment.

(b) Featureless surface at 1. (c) Featureless surface at 2. (d) Featureless surface at 3.

Figure 3.6: Featureless surface present in the experiment environment labeled in the
order that the robot visits. See Table 3.3 for reference to location A.

along the track shown in figs. 3.6b to 3.6d. At each location, the robot was rotated into

the wall such that its entire field of view was covered by a blank wall.

The illumination condition of the experiment was tested under dim and dark illu-

mination conditions. The dim condition has an average light intensity of 75 lux. It
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Table 3.1: Specifications of sensors tested in SLAM algorithm robustness experiment

Sensor Type Effective Range Resolution FPS IMU
Orbbec Astra [113] RGB-D 0.6-8m 852 × 480 30 no

ZED Mini [114] stereo 0.15-12m 3840 × 2160 60 yes
Intel-D435 [115] active stereo 0.2-10m 1280 × 720 60 no

is comparable to a regular office space [112]. The dark condition has an average light

intensity of 5 lux. Figure 3.7 shows the light intensity comparison.

(a) Dim illumination with lux=75. (b) Dark illumination with lux=5.

Figure 3.7: Experiment environment illumination conditions. Image taken by ZED-Mini
camera.

3.4.2 Sensors

Three representative vision sensors used within mobile robotics were tested; the Orbbec

Astra RGB-D sensor, Zed Mini stereo sensor with built-in IMU, and Intel-D435 active

stereo sensor.

The Orbbec Astra sensor is an RGB-D sensor. It is a monocular camera combined

with active depth sensing. RGB-D sensors use a laser array to project a series of dots in

front and match the dots to its monocular camera image to attain depth information [116].

It has the advantage of measuring accurate depth information without requiring visual

texture. However, it has the drawback that it cannot operate outdoors due to interference

from natural lighting and range limit due to the limited laser power.

The ZED-Mini from Stereo Labs is a stereo sensor with a built-in 6-Degrees of Freedom



Chapter 3. Decentralized Robot Architecture 34

(DOF) IMU and low-light sensitivity camera sensor. A stereo vision camera uses two

cameras with a fixed distance between one another. Instead of using a laser to measure

the depth, it calculates the depth from the pixel position difference seen from the left

and right camera [117]. It has the advantage that it is not limited to indoors and not

limited by the laser power and density of the laser array. However, the depth estimation

relies on visual texture, and it is less accurate than an RBG-D camera due to errors when

calculating depth information.

The Intel-D435 camera is an active stereo camera, which uses a laser array projector to

assist in stereo-based depth estimation [115]. The laser array projector is activated where

lighting condition permits, such as in indoor environments. Stereo-only depth estimation

is used in environments where the laser array cannot operate due to lighting interference.

This camera produces a more accurate depth estimation than a stereo camera in indoor

environments and can work outdoors. However, its depth estimation is less accurate than

an RGB-D camera.

An additional difference between the ZED-Mini and the other two sensors is its 6-

DOF IMU. This IMU provides linear and angular acceleration information of the sensor,

which can calculate linear and angular velocity information through integration. Having

an IMU as one of the inputs to the SLAM means that the SLAM would be using VIO.

Without IMU, the SLAM would be using visual odometry (VO). The difference between

VIO and VO is that VIO fuses the inertial information with the visual information when

calculating odometry, whereas VO only uses the visual information. Incorporating VIO

into pose estimation can improve the robustness by estimating gravity, velocity, and

rotational rates [118].

Each of the sensors is different in terms of its recording capability. The ZED-Mini

camera has the highest recording capabilities, equip with a low-light sensitive sensor, and

can take up to 4K resolution videos [114]. Intel-D435 can output 720p with depth [115]

and Orrbec Astra are limited limited to 480p at 30fps [113]. A summary of sensor
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specification is shown in Table 3.1.

3.4.3 SLAM Algorithms

Table 3.2: Characteristics of ROS compatible SLAM algorithms in robustness experi-
ment.

SLAM Supported Sensor Supported Odom

Stereo RGB-D LiDAR IMU VIO VO

RTAB-Map [51] X X X X X X

ORB-SLAM2 [49] X X X

ZED-SLAM [52] X X X

The three different SLAM algorithms compared in this experiment are shown in Table 3.2;

RTAB-Map [51], ORB-SLAM2 [49], and [52] (ZED-SLAM). These algorithms are chosen

for their low error compared to other ROS based SLAM algorithms [48, 54, 55, 58, 59].

RTAB-Map and ORB-SLAM2 are two open source SLAM algorithms that were highly

ranked on the Kitti Vision Benchmark Suite [119]. ZED-SLAM is the close-sourced,

built-in SLAM algorithm of the ZED-Mini camera. Experiments conducted by [48, 55]

have shown that the trajectory estimated by these three SLAM packages have the least

error to the ground truth.

RTAB-Map is a loop-closure based SLAM algorithm, therefore it can accept external

odometry. In this experiment, it is tested with the VIO odometry provided by the ZED-

Mini and VO computed from RGB-D SLAM [60]. ORB-SLAM2 computes its visual

odometry using the image inputs. The ZED-SLAM is a close-sourced algorithm that is

ran using the onboard computing from the ZED-Mini camera. The most similar image

resolution available from each camera were used to minimize the performance difference

due to resolution.



Chapter 3. Decentralized Robot Architecture 36

3.4.4 Results

Table 3.3 shows the experiment results. Only RTAB-Map in combination with ZED-Mini

provided VIO odometry completed the entire track under both dim and dark illumination

levels. For all the VO experiments, the camera sensors and the SLAM algorithms were

limited by a lack of visual features and limited range.

This experiment showed that SLAM algorithms with robust loop-closure (i.e. RTAB-

Map) using VIO and stereo sensor (i.e. ZED-Mini) is the most robust against challenging

environmental conditions; motion disturbance, poor illumiantion, sparse visual features,

and long-range depth estimation. Such environmental challenges are common for appli-

cations that require 3D rough terrain navigation; USAR, hazardous material clean up,

construction, and mining. Stereo vision sensor is more robust than RGB-D sensors in

these environments because its depth estimation is not limited by the power of the IR

projector, therefore can operate in an open field. VIO can maintain odometry estimation

in conditions where vision odometry cannot be estimated. As such, vision sensors with

an IMU are less prone to losing odometry under poor lighting conditions.

The RTAB-Map SLAM is more robust compared to the ORB-SLAM2 and ZED-

SLAM algorithm. RTAB-Map can use VIO as input, where as ORB-SLAM2 cannot.

Additionally, RTAB-Map is less prone to losing odometry trajectory compared to ORB-

SLAM2 when both are using VO. RTAB-Map can also produce a more accurate map

than ZED-SLAM because it implemented Versatile extensions for robust inference using

graph optimization (Vertigo) to prevent loopclosure errors caused by objects with similar

visual features at different locations. Furthermore, RTAB-Map is more versatile than

both ORB-SLAM2 and ZED-SLAM because it can uniquely use externally computed

odometry as well as be used with a LiDAR, where the other tested SLAM algorithms

cannot.
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Table 3.3: SLAM algorithm robustness experiments result. See Figure 3.6a for location.

Algorithm Light Sensor Odometry Resolution FPS Result
RTAB-Map dim/75 lux Intel-D435 VO 640 × 480 30 failed at 1
RTAB-Map dark/5 lux Intel-D435 VO 640 × 480 30 failed at A
RTAB-Map dim/75 lux Orbbec Astra VO 852 × 480 30 failed at start
RTAB-Map dark/5 lux Orbbec Astra VO 852 × 480 30 failed at start
RTAB-Map dim/75 lux ZED-Mini VO 672 × 376 30 failed at 1
RTAB-Map dark/5 lux ZED-Mini VO 672 × 376 30 failed at 1
RTAB-Map dim/75 lux ZED-Mini VIO 672 × 376 30 completed
RTAB-Map dark/5 lux ZED-Mini VIO 672 × 376 30 completed

ORB-SLAM2 dim/75 lux Intel-D435 VO 640 × 480 30 failed at A
ORB-SLAM2 dark/5 lux Intel-D435 VO 640 × 480 30 failed at start
ORB-SLAM2 dim/75 lux Orbbec Astra VO 852 × 480 30 failed at start
ORB-SLAM2 dark/5 lux Orbbec Astra VO 852 × 480 30 failed at start
ORB-SLAM2 dim/75 lux ZED-Mini VO 672 × 376 30 failed at 1
ORB-SLAM2 dark/5 lux ZED-Mini VO 672 × 376 30 failed at start
ZED-SLAM dim/75 lux ZED-Mini VIO 672 × 376 30 failed loopclosure
ZED-SLAM dark/5 lux ZED-Mini VIO 672 × 376 30 failed loopclosure

(a) Dim illumiantion condition result. Lux = 75. Left: 2D graph-view map. Right: denoised
3D point cloud.

(b) Dark illumiantion condition result, lux = 5. Left: 2D graph-view map. Right: denoised 3D
point cloud.

Figure 3.8: Completed experiment results, RTAB-Map with external VIO from ZED-
Mini.



Chapter 3. Decentralized Robot Architecture 38

The mapping result of RTAB-Map in combination with VIO from ZED-Mini is shown

in Figure 3.8. The dim illumiantion condition produced the map shown in Figure 3.8a,

which is similar to the actual layout of the experiment environment. The dark illumi-

nation experiment resulted in a distorted map shown in Figure 3.8b. This distortion

was due to the dark illumination condition resulting in a lack of visual odometry esti-

mation from the ZED-Mini camera. However, RTAB-Map did not lose tracking because

ZED-Mini provided IMU-based odometry.

ORB-SLAM2 failed to initialize in the dark illumination experiment settings for all

three sensors. It successfully initialized for the dim illumination settings when using

Intel-D435 and ZED-Mini. However, it quickly lost odometry tracking when the input

image had sparse features as seen in Figure 3.6. The dim illumination experiment with

the Orbbec Astra camera failed on initialization because the camera’s depth measurement

range is too short for the experiment environment.

The RTAB-Map experiments that used Orbbec Astra camera and Intel-D435 to com-

pute VO using RGBD-SLAM failed to compute odometry due to a lack of features for

both dim and dark environments. It was only able to complete the full experiment path

when using the external VIO provided by the ZED-Mini.

The ZED-SLAM maintained continuous odometry tracking during the experiment.

However, its loop closure method was not robust to similar objects located at different

locations, therefore resulted in faulty loop closure detections and added significant errors

to the generated map [120]. RTAB-Map implemented Vertigo [121] in consideration of

this error to increase robustness to graph optimization.

The initialization failure and losing odometry tracking for ORB-SLAM2 and RTAB-

Map with VO was caused by the poor illumination and lack of visual features. Both were

required for computing the visual odometry.

Experiment with a dark illumination level of 5 lux resulted in images that were too

dark or over-saturated as seen in Figure 3.9. This degraded the performance of the
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SLAM algorithm [104, 105]. The camera drivers of the Intel-D435 and the ZED-Mini

camera have a built-in driver that auto-compensates the exposure and saturation level to

account for the low light environment. This feature resulted in noisy images for the Intel-

D435 as seen in Figure 3.9b and Figure 3.9c. SLAM with noisy image input degrades

in performance due to increased error in feature matching between frames [122]. The

ZED-Mini camera’s image was less noisy as seen in Figure 3.9c as it was equipt with a

high sensitivity low-light camera sensor. This allowed the VO based experiments with

ZED-Mini to have better performance than that with Intel-D435 as shown in Table 3.3

and Figure 3.6a.

(a) Orbbec Astra (b) Intel-D435 (c) ZED-Mini

Figure 3.9: Camera sensor image from dark illumination experiment. Lux=5.

The monochrome colored surfaces in the experiment environment, such as uniform

colored walls and floor, caused the SLAM algorithm to fail to compute odometry due to

their lack of visual features [106,107].

The effective range of depth estimation for each sensor shown in Table 3.1 is one of the

causes of loss of odometry. The range of the Orbbec Astra RGB-D camera is limited by

the power of the laser array. Objects outside of the effective range are unregistered. For

the ZED-Mini stereo camera, the range is limited by the distance between the left and

right camera. The estimated depth value of objects is less accurate for objects further

away. Both limitations apply to Intel-D435 as it is an active stereo camera. These

causes inaccurate odometry computation for the SLAM algorithms as they rely on depth

information to compute VO. This is further shown by Table 3.3 and Figure 3.6a, where
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experiments with Intel-D435 failed earlier than ZED-Mini due to Intel-D435 has a shorter

effective depth range. During the experiment, the Orbbec Astra camera always failed

on initialization because it faces an open field that does not have any object within its

effective depth range.

3.5 Chapter Summary

This chapter presented the hardware and software design of a decentralized ROS based

architecture for a wheeled mobile platform. The architecture was integrated into the

Jaguar4×4 mobile wheeled platform to enable autonomous navigation capabilities for

3D rough terrain navigation.

The detailed design of the decentralized architecture is presented in Section 3.1.

The architecture facilitated communication between multiple computing units within

the Jaguar4×4 and a ground station computer. The Jetson TX2 is used for Graphic

Processing Unit (GPU) intensive opeartions; acquiring RGB-D data using a ZED-Mini

stereo camera with integrated IMU. The Intel NUC onboard computer is used for CPU

intensive operations; acquiring LiDAR data using a VLP-16 3D LiDAR, 3D mapping and

localization using RTAB-Map, elevation map generation, motor control, and broadcasting

data to the ground station for visualization.

Section 3.4 presented the 3D mapping experiment conducted to determine the com-

bination of sensor and SLAM algorithm that is robust against environmental challenges.

The experiment environment had features that are challenging to vision sensors and

SLAM algorithms; poor illumination conditions, sparse visual key points, motion blur,

and long-range depth estimation. The experiment demonstrated that the RTAB-Map

using VIO provided by the ZED-Mini was able to complete the mapping of the exper-

iment environment. The other tested combinations lost odometry tracking during the

experiment due to environmental challenges.
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Sim-to-Real Transfer of Deep

Reinforcement Learning Policy for

Rough Terrain Navigation

This section presents the pipeline shown in Figure 4.1 for transferring rough terrain

navigation policy from the simulation into the real world. The pipeline was developed in

collaboration with Kaicheng Zhang. My specific contributions are detailed in section 4.1

The proposed pipeline is built using ROS as the framework. It allows DRL based

navigation policy learned from the simulation to be deployed into the real world such

that no additional training is required in the real world.

41
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Figure 4.1: Pipeline for sim-to-real transfer of rough terrain navigation policy. This
pipeline is developed in conjunction with Kaicheng Zhang.

This pipeline utilized three sim-to-real strategies to address the reality gap [32]: 1)
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improving simulation fidelity, 2) using domain invariant observation space, and 3) domain

randomization of training parameters. Improving simulation fidelity is to tune the simu-

lation learning environment such that simulation parameters are closer to the real world

values [32]. Domain invariant features applied by [39, 40] show that using inputs that

are invariant between the simulation environment and the real world avoids overfitting

to features that are environment-specific, such as texture, color, and lighting condition.

Domain randomization is a popular sim-to-real strategy used by [32, 35–37]. It exposes

the policy to a wide range of parameter variations during training such that the policy

is less prone to overfit to simulation-specific parameter values, and the real-world may

appear to the policy as one of the variations [32,35].

To improve the simulation fidelity, an accurate 3D point cloud model of the naviga-

tion environment with high geometric fidelity is first scanned using RGB-D cameras, 3D

LiDAR, and IMU as the inputs to the RTAB-Map algorithm. The 3D point cloud is

then cleaned and reconstructed into a continuous mesh surface at the Preparation phase.

The Simulated Environment within the Gazebo simulator [46] is built using the recon-

structed mesh. The DRL module interacts with the Simulated Environment using the

robot’s position information provided by Robot Pose Estimation and a robot centric 2D

height representation provided by the Elevation Mapping module. This module learns a

navigation policy represented by a CNN using A3C developed in Pytorch [123]. Both the

robot position information and the elevation map are domain invariant. During Learn-

ing, domain randomization is applied to 3 simulation parameters to further narrow the

reality gap for challenging 3D terrain. At Deployment, the robot’s Perception is used to

generate a real-time elevation map and robot pose, similar to the inputs to the DRL.

The desired robot actions are produced by the DRL using the trained policy. These

actions are passed to the Closed-Loop Controller, which is then transformed into motion

commands for the robot’s Actuators. The main modules of the presented pipeline are

discussed in detail in the sections below.
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4.1 Contributions

The sim-to-real pipeline presents a large undertaking that was developed in collaboration

with Kaicheng Zhang in our lab. My specific contributions to this pipeline are:

• Design, development, and implementation of the perception module.

• Design, development, and implementation of the preparation module.

• Design, development of the simulation learning environment terrain.

• Design of using domain randomization technique for sim-to-real.

• Design, development, and implementation of the terrain steepness parameter ran-

domization.

• Design and formulation of the pose estimation parameter randomization.

• Design of motion disturbance parameter randomization.

• Integration and deployment of DRL navigation policy to the physical robot.

• Design of real-world experiment environment.

4.2 Perception

The Perception of the pipeline required an RGB-D Camera to provide RGB images

and registered depth information, a IMU for linear and angular accelerations, and a 3D

LiDAR for the 3D point cloud. In this thesis, he Intel-D435 with a built-in IMU was

used to provide the RGB images, depth, and acceleration information to the Preparation

during training and to the robot during Deployment. The Velodyne VLP-16 provided

the 3D point cloud to the Elevation Mapping module.
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4.3 Preparation

The preparation module bridges the reality gap due to the terrain geometric differences

between the real world and the simulation. It constructs a geometrically accurate terrain

model of the real-world environment. This strategy was shown to be successful in [32,41]

The model construction is shown in Figure 4.2a, where an RGB-D camera with a

built-in IMU was used to build a 3D point cloud model as seen in Figure 4.2b with

a 3D mapping algorithm such as RTAB-Map [51]. Point cloud viewing software such

as Meshlab [124] can be used to clean the point cloud model using denoise operations,

hole filling, and filtering floating surfaces. 3D meshing methods such as Poisson surface

reconstruction [51] is then used to reconstruct the cleaned point cloud into a continuous

3D mesh surface. The reconstructed mesh seen in Figure 4.2c is imported into the Gazebo

simulator as the simulation terrain.

(a) Real World Terrain (b) Point Cloud Model (c) Simulation Terrain

Figure 4.2: Preparation process of creating the simulation environment terrain for learn-
ing navigation policy.

4.4 Learning

4.4.1 Simulated Environment

The 3D simulation training environment was developed by me using the Preparation

module and a simulation model of the Jaguar4×4 developed in [29]. Similar to the high

fidelity simulators used by [32,41], the navigation policy was learned in a simulator with
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high geometric fidelity. The real-world robot is represented in the simulation environment

with a physics model of the Jaguar4×4 platform developed by [29].

4.4.2 Deep Reinforcement Learning

The DRL learning method was developed by Kaicheng Zhang in [29]. It is discussed

here for completeness. The DRL module is used to learn the optimal robot navigation

actions within the environment. This module follows the A3C [47] algorithm to learn a

policy π(at|st, θ) represented by a CNN network parameterized by θ. At each time step,

π(at|st, θ) determines a discrete robot action at output that maximizes the expected

future reward given the robot state st. The set of at are linear forward or backward

motion for a distance L, or a positive or negative yaw rotation of θy. The st is the

Observation Space; Jt and elevation map.

Network Architecture The network architecture used is shown in Figure 4.3. A

LSTM layer is used to capture previous states in the decision-making process. The actor

layer output is the navigation action at, and the critic layer output is the estimated value

of a given state V (st, θvwww).

Figure 4.3: Network architecture with configuration details. Each convolution layer has
a stride of 1 and padding of 0 with RELU activation.
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4.4.3 Domain Randomization of Training Parameters

Domain randomization of training parameters’ value increases the likelihood of the real-

world parameter value being present during training, such that the real-world may appear

to the model as a training variation [32,35]. This strategy has been successfully applied

to real robots in several applications [32,35–37].

Three parameters were randomized during training to address the reality gap. Two

parameters address challenges that only exist in 3D terrain navigation. The third pa-

rameter addresses the robot pose estimation error in the real-world environment due to

factors such as sensor noise, lighting conditions, and texture.

Varying Terrain Steepness The cascading measurement errors from the Perception

module and mesh reconstruction errors from the Preparation can cause the simulation

terrain to deviate from the real-world terrain. The real-world terrain’s steepness and

traversability may not be accurately reflected in the simulated environment. These dis-

crepancies can cause the robot to take undesirable navigation actions such as climbing

steep slopes or taking non-traversable paths. Randomizing the terrain steepness can

minimize the effect of these discrepancies. The steepness is randomized during training

by uniformly scaling the mesh height h according to Equation 4.1. ho is the original

steepness of the mesh. Where Uh(elh, euh) is the distribution with lower bound elh and

upper bound euh.

h ∼= hoUh(elh, euh) (4.1)

Given the terrain steepness measurement cannot be accurately modeled, uniform

distribution is used to expose π(at|st, θ) during learning to a broad distribution of steep-

ness value. At each training episode, the simulation terrain is scaled by ±5%, i.e.

elh = 95%, euh = 105%. This value is determined from the translational error of RTAB-

Map [51] in the environment’s z axis and the robot’s geometry.
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Robot Motion Disturbance The robot-terrain interaction during navigation can

cause deviations to the robot’s intended actions. Examples are wheel slippage and un-

intended rotations due to insufficient traction or wheel placement at different elevations.

In [32], motion distribution was applied to a quadruped robot during training to improve

stability. This idea can be applied to rough terrain navigation to increase the robust-

ness of the navigation policy against robot-terrain interactions. However, because of the

unpredictable nature of robot-terrain interactions, it is difficult to train a policy that is

robust against all real-world robot-terrain interactions. Therefore, the applied motion

disturbance aims to improve the robot’s ability to recover from deviations to the intended

navigation route instead of increasing its resistance to external disturbances.

To improve the robustness of the learned policy against these robot-terrain interac-

tions, motion disturbances with a uniform distribution UL(elL, euL) and Uθy(elθyeuθy) are

applied to the robot’s action output L and θy during training with a probability I to

model the periodically occuring robot-terrain interactions. The elL and euL are the lower

and upper bounds of L randomization values, and elθy and euθy are the lower and upper

bounds of θy randomization values.

In additional to deviations caused by robot-terrain interactions, the robot motion is

also affected by latency when executing control commands, which has been found to be

a critical factor in DRL based controllers [32]. This latency is from the robot pose com-

putation time taken by the Robot Pose Estimation module and network latency. These

are modeled as a uniform distribution during training at each time step as U ′L(e′lL, e
′
uL)

and U ′θy(e′lθye
′
uθy

). The e′lL and e′uL are the lower and upper bounds of L randomization

values, and e′lθy and e′uθy

The robot motion during training with disturbances is shown in Equation 4.2 and

Equation 4.3. I follows a Bernoulli distribution, I ∼ Bern(P ) to model that the interac-

tion disturbance occurs at random instances where P is the hyperparameter representing
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the probability that the disturbances occur.

L = Lo + IUL(elL, euL) + U
′

L(e
′

lL, e
′
uL) (4.2)

θy = θyo + IUθy(elθyeuθy) + U
′

θy(e
′

lθye
′
uθy) (4.3)

The interaction disturbance randomization parameter values are elL = 20cm, euL =

40cm, elθy = −45◦, euθy = 45◦. The values are chosen to be large enough to cause the

robot to visibly deviate from its intended trajectory at the expected interval of 60s, i.e.

P = 1/60.

The latency disturbance randomization parameter values are e′lL = 0cm, e′uL =

3cm, e′lθy = 0◦, and e′uθy = 3◦. These values were determined by measuring the phys-

ical robot’s average deviation from the desired L and θy using visual odometry in an

arbitrary environment.

Robot Pose Estimation Error The robot pose estimation error can occur due to

sensor measurement errors, feature association errors, and scan alignment errors. Sensor

measurement errors can be caused by factors such as lens distortion effects and inaccurate

depth estimation errors [125]. Feature association errors are caused by the inclusion of

ambiguous and sparse features in the computation [125]. Scan alignment errors may

occur due to outliers when matching each subsequent scan with the previous scan using

matching algorithms such as Iterative Closest Point(ICP). These errors can cause the

estimated pose to deviate from the true values [125]. These pose estimation errors affects

the input to the DRL network; the robot pose Jt = {dt, αt, βt, γt} derived from the pose

estimation and the elevation map which uses Jt to aggregate point cloud scans. To ensure

the learned policy π(at|st, θ) is robust against the pose estimation errors in the real world,

a zero-mean Gaussian distribution Np(0, σp) with standard deviation σp is added to the

robot pose during the learning process as seen in Equation 4.4. Where po is the 6 DOF



Chapter 4. Sim-to-Real Transfer of DRL Policy 50

pose estimated by the Robot Pose Estimation module.

pt = po +Np (0, σp) (4.4)

The robot pose randomization values are σpl = 6cm for all positional values and

σpr = 6◦ for all euclidean angle pose values. These values were chosen based on the

expected translational and orientation errors when mapping a similar sized environment

using visual slam [51,60].

4.4.4 Training

The robot was trained in simulation by moving between a pair of randomly generated

starting and goal locations. Nine parallel threads were used to collect experiences from

independent simulations in parallel. Navigation actions of the robot during training were

computed using the most recent policy π(at|st, θ) updated by the A3C algorithm. The

reward received during training was used to update the weights of the network. The

action output value are L = 10cm, θy = 15◦. The details of the training conducted are

presented in [126].

Figure 4.4: Cumulative reward per episode per 2000 episodes.
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4.5 Network Output and Deployment

The policy network outputs L and θy as the action command. A two-layer closed-loop

controller shown in Figure 3.4 executes the action command using visual odometry as

feedback. The outer layer bang-bang controller outputs a constant velocity commands

to the inner proportional controller [96] until L or θy has been reached. The velocity

commands are converted into individual wheel spin rates using a skid steer kinematic

model [90]. The proportional controller tracks the wheel spin rate using wheel encoders

as feedback.

4.6 Experiments

Three experiments were conducted to analyze the effectiveness of the sim-to-real trans-

fer pipeline proposed in 4; a real-world experiment to determine the success rate of

autonomous navigation in a cluttered rough terrain, a comparison study of the DRL

method against a classical method, and an ablation study on the effectiveness of the the

domain randomization parameters.

4.6.1 Real-World Experiments

Mobile Robot

The physical robot used in the experiment was the Jaguar4×4 developed in 3. The

perception sensors mounted on the robot is the Velodyne VLP-16 3D LiDAR and the

Stereo Labs ZED-Mini stereo camera with an integrated IMU. The robot has a Intel NUC

with a Core i5 CPU and a Jetson TX2 mobile GPU. The Jetson TX2 collects RGB images

with registered depth information and IMU data from the ZED-Mini sensor. The Intel

NUC uses the collected information, 3D LiDAR point cloud, and encoders to compute the

robot pose, elevation map, and executes the robot navigation actions. A ground station
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server with an Intel i7-7700K CPU uses the pose and the elevation map to generate the

navigation action commands.

Experiment Environment

A 36m2 cluttered rough terrain experiment environment shown in Figure 4.5 was built

using wooden pallets and scattered objects. The environment is divided into 22 regions

of different elevations and transition features shown in Figure 4.5b. The full steps have

a height of 0.13mm, and the half steps have a height between 0.5 to 0.08m shown in

Figure 4.5g. The slope and the length of the ramps range between 20◦−40◦ and 0.3−0.9m,

Figure 4.5h. The traversability of these transition regions depends on the robot’s position,

angle of approach, and intended action. The Jaguar4×4 cannot climb full steps when

moving directly toward it, and it can climb half steps.

Procedure

In each experiment trial, the robot navigated between a pair of randomly selected start

and goal locations. A successful trial is when the robot autonomously arrive at the goal

within a tolerance distance dg = 0.3m and a time tmax = 10min. 20 combinations of

start and goal location pairs were randomly chosen across the environment, where each

pair is repeated 3 times for a total of 60 trials.

Results

The experiments had shown that the robot traversed the real-world environment using a

deep reinforcement learning-based navigation policy learned in simulation with a success

rate of 86.67% in the real world. The success rate for this experiment in simulation

is 90.0%. The success rate across the three trials of each location pair is presented in

Table 4.1.

Navigation strategies have been learned during training to climb challenging terrain.
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(a) Terrain with regions (1 to 22). (b) Labeled terrain features.

(c) Terrain image from region 1. (d) Terrain image from region 19.

(e) Terrain image from region 22. (f) Terrain image from region 9.

(g) Full and half steps. (h) Obstacles and ramps.

Figure 4.5: Real world experiment environment shown in (a). Terrain images taken from
different angles shown at (c) to (f). Zoomed in view of terrain features at (g) and (h).

For instance, the robot learned to leverage adjacent ramps and half steps to climb full

steps. It also learned to keep a minimum distance from walls and ledges to avoid a collision

or falling when traversing through the terrain. The robot would also try different heading

directions when it becomes stuck. The test 10 trial shown as the yellow trajectory in
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Table 4.1: Success rate of all 60 trials in the real environment.

Test Start x, y, yaw (m,m,rad), Region Goal x, y (m,m), Region Success %
1 [-0.18, 0.27, -3.14], 12 [-0.33, -1.86], 10 100
2 [-0.45, -1.9, 1.57], 10 [-0.16, 0.22], 12 100
3 [-2.56, -1.65, 0], 1 [-0.17, 2.47], 14 66.67
4 [-0.34, 2.62, 3.12], 14 [-2.28, -1.85], 1 100
5 [-2.22, 1.39, -1.46], 4 [1.1, -0.2], 16 66.67
6 [1.33, -0.27, 0.13], 16 [-2.3, 1.42], 4 100
7 [-1.85, 0.25, -0.12], 7 [-0.17, 2.47], 14 33.33
8 [-0.20, 2.77, 3.05], 14 [-1.3, 0.1], 7 100
9 [-1.45, 2.71, -1.76], 9 [-0.33, -1.86], 10 100
10 [-0.38, -2.06, 1.47], 10 [-1.2, 2.31], 9 100
11 [-1.74, 2.51, -1.23], 9 [1.99, -1.49], 19 100
12 [2.22, -1.67, 2.98], 19 [-1.2, 2.31], 9 100
13 [-0.45, -1.76, 0.14], 10 [1.99, -1.49], 19 100
14 [2.16, -1.48, 1.78], 19 [-0.33, -1.86], 10 100
15 [1.38, 0.35, -1.57], 16 [-0.33, -1.86], 10 100
16 [-0.45, -1.96, 1.88], 10 [1.1, 0.2], 16 100
17 [-0.39, 0.46, -0.11], 12 [1.99, -1.49], 19 100
18 [2.26, -1.49, 2.57], 19 [-0.16, 0.22], 12 100
19 [-0.25, 0.38, 1.55], 12 [1.66, 1.96], 22 100
20 [1.95, 2.11, 3.12], 22 [-0.16, 0.22], 12 0

Average Total Success Rate 86.67%

Figure 4.6a showed successful navigation to the goal from region 10 to region 9 where

the robot used the learned skills. In this test, the robot climbed a ramp and stopped

before an unclimbable obstacle as shown in Figure 4.6b. Following that, the robot used

the adjacent ramp and climbed over a full step to avoid the unclimbable obstacle in

Figure 4.6c. Finally, the robot descended the ramp shown in Figure 4.6d to the goal

location.

Tests 3, 5, and 7 had a few failure trials. These were caused by repeated vibrations due

to drops and bumps during traversal that caused large drifts in the sensor measurements

and led to variability in the robot’s decisions. Additionally, the limited resolution of the

pipeline’s 3D mapping module with RTAB-Map and 3D meshing caused deviations of

the simulation terrain from the real world. Some gaps and edges in the terrain appeared

smaller in simulation, which allowed the robot to cross some gaps in simulation that were

not traversable in the real environment.
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In Test 20, the robot navigated to the goal in simulation (orange in Figure 4.6a), but

failed to do so in the real environment (purple in Figure 4.6a). It was because the angle

of approach to the ramp during the trial as shown in Figure 4.6d caused the ramp to be

unclimbable. This issue resulted in the robot failing the experiment trials at the terminal

pose shown in Figure 4.6a due to reaching tmax.

This experiment repeated in a simulated environment had a total average success rate

of 90.9%. It is close to the 86.67% success rate of the real world, which showed that the

proposed pipeline is successful in the sim-to-real transfer of a DRL navigation policy.

(a) 3D point cloud model of the environment with 3 diferent trajectories
shown. Test 10 real trajectory (yellow), Test 20 real trajectory (orange),
Test 20 simulation trajectory (purple).

(b) Zoomed in view at A in (a). (c) Zoomed in view at B in (a). (d) Zoomed in view at C in (a).

Figure 4.6: Robot trajectories taken during experiment trials 10 and 20.
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4.6.2 Comparison Study

A study was conducted in the simulated environment to compare the performance of the

DRL policy trained using the sim-to-real pipeline and a classical binary traversability

method [26].

The method presented by [26] is chosen as the classical method. This method com-

pared the linear combination of the terrain’s height, slope, and roughness against a

threshold to determine a binary traversability value. It is representative of the existing

classical methods as it uses hand-picked feature inputs to its algorithm and relies on

handcrafted heuristic rules to determine the terrain traversability.

This comparison study measures the success rate, cumulative travel distance to ac-

count for terrain and path variability, cumulative travel time for successful trials, and

path replanning rate. The same location pairs as the ones listed in Table 4.1 were used

in this experiment.

Results

Figure 4.7 shows the performance metrics of all the methods. The success rates of

the compared methods are 18% and 90% for the classical and the DRL based method

respectively. The DRL method had a shorter cumulative distance and faster time of

14.51m and 227s. The classical method cumulatively traveled 15.47m in 451s. The

overall replanning rate of the DRL method was a faster 3.2Hz, where the classical was

1.8Hz.

This comparison showed that the DRL method is more successful and faster at reach-

ing the goal location compared to the classical method.

The robot trajectory for Test 3 is shown Figure 4.8; a representative example of where

the classical method failed and the DRL succeeded. In Figure 4.8b, the robot’s path us-

ing the classical method prematurely terminated at location A. The classical method

misidentified some grid cells as obstacles, therefore caused the robot to be stuck near the
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Figure 4.7: Comparison study result. Performance metric: (a) success rate, (b) cumula-
tive travel distance, (c) cumulative travel time, and (d) path replanning rate.

starting location. This misidentification was due to the reliance on manually designed

heuristics for traversability estimation, which was shown to be unreliable in complex ter-

rain. These errors cascaded into the planning stage, which caused the planner to fail to

find valid paths to the goal. Furthermore, a classical method is a multi-stage approach

that overly simplifies the terrain traversability representation. This simplification does

not provide the planning stage with any information regarding the robot-terrain inter-

action that is needed when navigating 3D rough terrain [126]. The DRL reached the

goal as it learned the traversability of the path using a CNN and avoided simplifying

the traversability representation by directly mapping the observation space to an action

output.
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(a) Robot path in Test 3. (b) Classical traversability map at A.

Figure 4.8: Compairson study of Test 3 between clasical and DRL based navigation
method.

4.6.3 Ablation Study

An ablation study was conducted in simulation on the domain randomization parameters

presented in subsection 4.4.3 to evaluate the importance of each parameter in sim-to-real

transfer. The performance of a model trained with all three parameters was compared

against other models trained in the absence of each parameter. To have controlled eval-

uation with large terrain variations, this is conducted in the simulated environment by

doubling the randomized parameters during evaluation until they were 8 times the values

used during training. The evaluation environment parameters are shown in Table 4.2.

Results

Table 4.2: Ablation study evaluation environment hyperparameters.

Baseline x2 x4 x8
Steepness 5% 10% 20% 40%
Latency 0∼0.03m, 0◦ ∼ 3◦ 0 ∼ 0.06m, 0◦ ∼ 6◦ 0 ∼ 0.12m, 0◦ ∼ 12◦ 0 ∼ 0.24m, 0◦ ∼ 24◦

Pose Error 0.06m, 5◦ 0.12m, 10◦ 0.24m, 20◦ 0.48m, 40◦
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Figure 4.9: Ablation study of model performance. E: trained with elevation steepness,
MD: trained with motion disturbance, and P: trained with pose estimation errors.

Figure 4.9 presents the result of the ablation study. The E+MD+P (elevation steep-

ness + motion disturbance + pose estimation errors) trained with all domain random-

ization parameters was the most consistent in maximizing the cumulative rewards. The

E+P and the MD+P models performed similarly. It is because uncertainties in the train-

ing domain can be seen as a perturbation on the system [32]. The MD+P showed the

most drastic change in its performance. This change further supports the idea that train-

ing with pose estimation error and motion disturbance has a similar effect on the system

while also emphasizing the importance of training with elevation steepness randomization

to generalize the model to larger terrain variations.

4.7 Chapter Summary

This chapter presented a novel sim-to-real pipeline for transferring 3D rough terrain

navigation policy learned in simulation to the real world. This is achieved through using

sim-to-real strategies; improving the simulation fidelity, using domain-invariant inputs,

and applying domain randomization during training.

Simulation fidelity is improved through the procedure presented in section 4.3 to

create a geometrically accurate 3D model of the real-world terrain for the training envi-
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ronment.

Robot position information and elevation map are the domain invariant inputs to

the learning algorithm. These do not use raw data, which can overfit to domain-specific

details such as color, texture, lighting conditions, and sensor noise patterns.

Section 4.4 described the DRL navigation algorithm used to train the navigation algo-

rithm. During training, domain randomization of terrain steepness, motion disturbance,

and robot pose randomization was applied to exposes the policy to a wide range of pa-

rameter variations such that it is less prone to overfit to simulation-specific parameter

values.

Experiments were conducted for 1) validating the effectiveness of the presented sim-

to-real pipeline in section 4.6.1, 2) comparison of DRL based navigation policy against

existing literature in section 4.6.2, and 3) an ablation study on the importance of the

domain randomization parameters in section 4.6.3.

Section 4.6.1 showed that the sim-to-real pipeline proposed in chapter 4 is effective in

transferring navigation policy learned in simulation to the real world. The pipeline en-

abled the robot to successfully navigate the real-world target environment with a success

rate of 86.67% given a simulation navigation success rate of 90.9%.

The comparison study in subsection 4.6.2 demonstrated that a DRL end-to-end based

method for rough terrain is more successful and efficient in reaching the target location

when compared to multi-stage methods that separate terrain traversability classifica-

tion and path planning. Multi-stage methods suffer from an overly simplified terrain

traversability representation. This simplification causes loss of information important

to understanding 3D rough terrain navigation, such as robot-terrain interaction. The

end-to-end DRL based method avoided this simplification and achieved a higher success

rate.

The ablation study subsection 4.6.3 has shown that randomizing terrain steepness,

motion disturbance, and robot pose estimation noise is important to learning a method



Chapter 4. Sim-to-Real Transfer of DRL Policy 61

that can consistently maximize reward in terrains with greater variability in the training

environment.



Chapter 5

Conclusion

5.1 Final Concluding Statement

This thesis presented the design of a decentralized architecture of a mobile robot and

a sim-to-real transfer pipeline for DRL navigation policy in a 3D cluttered rough ter-

rain with abrupt changes in elevation and surface normals. The ROS based distributed

computing software architecture allows the robot to have multiple computing units that

operate independently of a remote ground station. The mobile platform architecture is

designed to use the SLAM and sensor combination that is robust to the challenges of

rough terrain environments.

A novel sim-to-real pipeline was presented for transfer reinforcement learning-based

rough terrain navigation policy learned in simulation to the real world. This pipeline

addressed the discrepancies between the real-world and the simulation by improving the

simulation fidelity by 1) utilizing a geometrically accurate terrain model in simulation,

2) use domain invariant inputs to the DRL learning algorithm, and 3) apply domain ran-

domization to three simulation parameters that were designed to address the challenges

in 3D rough terrain by considering the robot-terrain interaction.

The feasibility of the proposed sim-to-real pipeline was shown by a set of successful

62
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real-world navigation experiments in a real-world 3D rough terrain. This experiment

showed that the proposed pipeline had a real-world navigation success rate of 86.67%

given a simulation navigation success rate of 90.9%. Comparison studies have shown

that the DRL based navigation approach is more successful in performing rough terrain

navigation compared to existing classical methods. An ablation study showed that using

all the domain randomization parameters is needed to maximize the cumulative reward

given terrain with higher variability.

5.2 Future Work

A limitation of the proposed pipeline is that DRL algorithms suffer from overfitting

to the training environments. Therefore the proposed pipeline is difficult to apply to

unknown terrain. The future work would be to overcome this limitation. It would require

representing the vast variability of the real-world environment in the training terrain.

Additional work would include improving the robustness of the pipeline to address the

failure cases seen.

5.3 Summary of Contributions

The contributions of this thesis are

1. The design of a ROS based decentralized architecture for a wheeled mobile platform

2. The first to empirically compared the robustness of ROS compatible SLAM al-

gorithms and sensor combination under a multitude of challenging environmental

conditions.

3. Development of a sim-to-real pipeline that is the first to address the cluttered 3D

rough terrain’s reality gap for autonomous navigation.



Chapter 5. Conclusion 64

4. Proposed three new domain randomization parameters to specifically address the

challenges in a 3D rough terrain navigation environment.

5. The first to demonstrate successful implementation of DRL for real-world rough

terrain navigation.

6. Comparison experiments between existing rough terrain navigation methods and

the DRL based method.

7. Conducted an ablation study that analyzed the effectiveness of the new domain

randomization methods.
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[92] Péter Fankhauser, Michael Bloesch, Christian Gehring, Marco Hutter, and Roland

Siegwart. Robot-centric elevation mapping with uncertainty estimates. In Inter-

national Conference on Climbing and Walking Robots (CLAWAR), 2014.

http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/topic_tools/relay
http://wiki.ros.org/compressed_image_transport
http://wiki.ros.org/compressed_image_transport
https://github.com/ros-drivers/velodyne
https://github.com/ros-drivers/velodyne


Bibliography 76
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